/*
* nsf.c --
*
* Basic Machinery of the Next Scripting Framework, a Tcl-based framework
* for supporting language-oriented programming. For details, see
* http://next-scripting.org/.
*
* Copyright (C) 1999-2014 Gustaf Neumann (a) (b)
* Copyright (C) 1999-2007 Uwe Zdun (a) (b)
* Copyright (C) 2007-2008 Martin Matuska (b)
* Copyright (C) 2010-2014 Stefan Sobernig (b)
*
*
* (a) University of Essen
* Specification of Software Systems
* Altendorferstrasse 97-101
* D-45143 Essen, Germany
*
* (b) Vienna University of Economics and Business
* Institute of Information Systems and New Media
* A-1020, Welthandelsplatz 1
* Vienna, Austria
*
* This work is licensed under the MIT License
* http://www.opensource.org/licenses/MIT
*
* Copyright:
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*
* This software is based upon MIT Object Tcl by David Wetherall and
* Christopher J. Lindblad, that contains the following copyright
* message:
*
* "Copyright 1993 Massachusetts Institute of Technology
*
* Permission to use, copy, modify, distribute, and sell this
* software and its documentation for any purpose is hereby granted
* without fee, provided that the above copyright notice appear in
* all copies and that both that copyright notice and this
* permission notice appear in supporting documentation, and that
* the name of M.I.T. not be used in advertising or publicity
* pertaining to distribution of the software without specific,
* written prior permission. M.I.T. makes no representations about
* the suitability of this software for any purpose. It is
* provided "as is" without express or implied warranty."
*/
#define NSF_FORWARD_WITH_ONERROR 1
#define NSF_C 1
#include "nsfInt.h"
#include "nsfAccessInt.h"
#ifdef COMPILE_NSF_STUBS
# if defined(PRE86)
EXTERN NsfStubs nsfStubs;
# else
MODULE_SCOPE const NsfStubs nsfStubs;
# endif
#endif
#ifdef USE_TCL_STUBS
# define Nsf_ExprObjCmd(clientData, interp, objc, objv) \
NsfCallCommand(interp, NSF_EXPR, objc, objv)
#else
# define Nsf_ExprObjCmd(clientData, interp, objc, objv) \
Tcl_ExprObjCmd(clientData, interp, objc, objv)
#endif
/*
* Call Stack specific definitions
*/
typedef enum { CALLING_LEVEL, ACTIVE_LEVEL } CallStackLevel;
typedef struct callFrameContext {
int frameSaved;
Tcl_CallFrame *framePtr;
Tcl_CallFrame *varFramePtr;
} callFrameContext;
typedef struct NsfProcContext {
ClientData oldDeleteData;
Tcl_CmdDeleteProc *oldDeleteProc;
NsfParamDefs *paramDefs;
int checkAlwaysFlag;
} NsfProcContext;
/*
* TclCmdClientdata is an incomplete type containing the common
* field(s) of ForwardCmdClientData, AliasCmdClientData and
* SetterCmdClientData used for filling in at runtime the actual
* object.
*/
typedef struct TclCmdClientData {
NsfObject *object;
} TclCmdClientData;
typedef struct SetterCmdClientData {
NsfObject *object;
Nsf_Param *paramsPtr;
} SetterCmdClientData;
typedef struct ForwardCmdClientData {
NsfObject *object;
Tcl_Obj *cmdName;
Tcl_ObjCmdProc *objProc;
ClientData clientData;
int passthrough;
int needobjmap;
int verbose;
int hasNonposArgs;
int nr_args;
Tcl_Obj *args;
int frame;
#if defined(NSF_FORWARD_WITH_ONERROR)
Tcl_Obj *onerror;
#endif
Tcl_Obj *prefix;
int nr_subcommands;
Tcl_Obj *subcommands;
} ForwardCmdClientData;
typedef struct AliasCmdClientData {
NsfObject *object;
Tcl_Obj *cmdName;
Tcl_ObjCmdProc *objProc;
ClientData clientData;
NsfClass *class;
Tcl_Interp *interp;
Tcl_Command aliasedCmd;
Tcl_Command aliasCmd;
} AliasCmdClientData;
/*
* When NSF_MEM_COUNT is set, we want to trace as well the mem-count frees
* associated with the interp. Therefore, we need in this case a special
* client data structure.
*/
#ifdef NSF_MEM_COUNT
typedef struct NsfNamespaceClientData {
NsfObject *object;
Tcl_Namespace *nsPtr;
Tcl_Interp *interp;
} NsfNamespaceClientData;
#endif
/*
* Argv parsing specific definitions
*/
#define PARSE_CONTEXT_PREALLOC 20
typedef struct {
int status;
ClientData *clientData; /* 4 members pointer to the actual parse context data */
Tcl_Obj **objv;
Tcl_Obj **full_objv; /* contains method as well */
unsigned int *flags;
ClientData clientData_static[PARSE_CONTEXT_PREALLOC]; /* 3 members preallocated parse context data */
Tcl_Obj *objv_static[PARSE_CONTEXT_PREALLOC+1];
unsigned int flags_static[PARSE_CONTEXT_PREALLOC+1];
int lastObjc; /* points to the first "unprocessed" argument */
int objc;
int varArgs; /* does the parameter end with some kind of "args" */
NsfObject *object;
} ParseContext;
static Nsf_TypeConverter ConvertToNothing, ConvertViaCmd, ConvertToObjpattern;
/*
* Tcl_Obj Types for Next Scripting Objects
*/
static Tcl_ObjType CONST86
*Nsf_OT_byteCodeType = NULL,
*Nsf_OT_tclCmdNameType = NULL,
*Nsf_OT_listType = NULL,
*Nsf_OT_doubleType = NULL,
*Nsf_OT_intType = NULL,
*Nsf_OT_parsedVarNameType = NULL;
/*
* Function prototypes
*/
/* Prototypes for method definitions */
static Tcl_ObjCmdProc NsfForwardMethod;
static Tcl_ObjCmdProc NsfObjscopedMethod;
static Tcl_ObjCmdProc NsfSetterMethod;
static Tcl_ObjCmdProc NsfProcAliasMethod;
static Tcl_ObjCmdProc NsfAsmProc;
/* Prototypes for methods called directly when CallDirectly() returns NULL */
static int NsfCAllocMethod(Tcl_Interp *interp, NsfClass *cl, Tcl_Obj *nameObj)
nonnull(1) nonnull(2);
static int NsfCAllocMethod_(Tcl_Interp *interp, NsfClass *cl, Tcl_Obj *nameObj, Tcl_Namespace *parentNsPtr)
nonnull(1) nonnull(2) nonnull(3);
static int NsfCCreateMethod(Tcl_Interp *interp, NsfClass *cl, Tcl_Obj *nameObj, int objc, Tcl_Obj *CONST objv[])
nonnull(1) nonnull(2) nonnull(3) nonnull(5);
static int NsfOCleanupMethod(Tcl_Interp *interp, NsfObject *object)
nonnull(1) nonnull(2);
static int NsfOConfigureMethod(Tcl_Interp *interp, NsfObject *object, int objc, Tcl_Obj *CONST objv[], Tcl_Obj *objv0)
nonnull(1) nonnull(2) nonnull(4) nonnull(5);
static int NsfODestroyMethod(Tcl_Interp *interp, NsfObject *object) nonnull(1) nonnull(2);
static int MethodDispatch(ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *CONST objv[],
Tcl_Command cmd, NsfObject *object, NsfClass *cl,
const char *methodName, int frameType, unsigned int flags)
nonnull(1) nonnull(2) nonnull(4) nonnull(5) nonnull(6) nonnull(8);
static int DispatchDefaultMethod(Tcl_Interp *interp, NsfObject *object, Tcl_Obj *obj, unsigned int flags)
nonnull(1) nonnull(2) nonnull(3);
static int DispatchDestroyMethod(Tcl_Interp *interp, NsfObject *object, unsigned int flags)
nonnull(1) nonnull(2);
static int DispatchUnknownMethod(Tcl_Interp *interp, NsfObject *object,
int objc, Tcl_Obj *CONST objv[], Tcl_Obj *callInfo,
Tcl_Obj *methodObj, unsigned int flags)
nonnull(1) nonnull(2) nonnull(4) nonnull(6);
NSF_INLINE static int ObjectDispatch(ClientData clientData, Tcl_Interp *interp, int objc,
Tcl_Obj *CONST objv[], unsigned int flags)
nonnull(1) nonnull(2) nonnull(4);
NSF_INLINE static int ObjectDispatchFinalize(Tcl_Interp *interp, NsfCallStackContent *cscPtr,
int result /*, char *string , const char *methodName*/)
nonnull(1) nonnull(2);
/* prototypes for object life-cycle management */
static int RecreateObject(Tcl_Interp *interp, NsfClass *cl, NsfObject *object, int objc, Tcl_Obj *CONST objv[])
nonnull(1) nonnull(2) nonnull(3) nonnull(5);
static void FinalObjectDeletion(Tcl_Interp *interp, NsfObject *object) nonnull(1) nonnull(2);
#if defined(DO_CLEANUP)
static void FreeAllNsfObjectsAndClasses(Tcl_Interp *interp, NsfCmdList **instances)
nonnull(1) nonnull(2);
#endif
static void CallStackDestroyObject(Tcl_Interp *interp, NsfObject *object) nonnull(1) nonnull(2);
static void PrimitiveCDestroy(ClientData clientData) nonnull(1);
static void PrimitiveODestroy(ClientData clientData) nonnull(1);
static void PrimitiveDestroy(ClientData clientData) nonnull(1);
/* prototypes for object and command lookup */
static NsfObject *GetObjectFromString(Tcl_Interp *interp, const char *name)
nonnull(1) nonnull(2);
static NsfClass *GetClassFromString(Tcl_Interp *interp, const char *name)
nonnull(1) nonnull(2);
static int GetClassFromObj(Tcl_Interp *interp, register Tcl_Obj *objPtr, NsfClass **clPtr, int withUnknown)
nonnull(1) nonnull(2) nonnull(3);
/*static NsfObject *GetHiddenObjectFromCmd(Tcl_Interp *interp, Tcl_Command cmdPtr);
static int ReverseLookupCmdFromCmdTable(Tcl_Interp *interp, Tcl_Command searchCmdPtr,
Tcl_HashTable *cmdTablePtr);*/
static void GetAllInstances(Tcl_Interp *interp, NsfCmdList **instances, NsfClass *startClass)
nonnull(1) nonnull(2) nonnull(3);
NSF_INLINE static Tcl_Command FindMethod(Tcl_Namespace *nsPtr, const char *methodName)
nonnull(1) nonnull(2);
/* prototypes for namespace specific calls */
static Tcl_Obj *NameInNamespaceObj(const char *name, Tcl_Namespace *ns) nonnull(1) nonnull(2);
static Tcl_Namespace *CallingNameSpace(Tcl_Interp *interp) nonnull(1) returns_nonnull;
NSF_INLINE static Tcl_Command NSFindCommand(Tcl_Interp *interp, const char *name) nonnull(1) nonnull(2);
static Tcl_Namespace *NSGetFreshNamespace(Tcl_Interp *interp, NsfObject *object, const char *name)
nonnull(1) nonnull(2) nonnull(3);
static Tcl_Namespace *RequireObjNamespace(Tcl_Interp *interp, NsfObject *object) nonnull(1) nonnull(2);
static int NSDeleteCmd(Tcl_Interp *interp, Tcl_Namespace *nsPtr, const char *methodName)
nonnull(1) nonnull(2) nonnull(3);
static void NSNamespaceDeleteProc(ClientData clientData) nonnull(1);
static void NSNamespacePreserve(Tcl_Namespace *nsPtr) nonnull(1);
static void NSNamespaceRelease(Tcl_Namespace *nsPtr) nonnull(1);
/* prototypes for filters and mixins */
static void FilterComputeDefined(Tcl_Interp *interp, NsfObject *object) nonnull(1) nonnull(2);
static void MixinComputeDefined(Tcl_Interp *interp, NsfObject *object) nonnull(1) nonnull(2);
NSF_INLINE static void GuardAdd(NsfCmdList *filterCL, Tcl_Obj *guardObj) nonnull(1) nonnull(2);
static int GuardCall(NsfObject *object, Tcl_Interp *interp,
Tcl_Obj *guardObj, NsfCallStackContent *cscPtr)
nonnull(1) nonnull(2) nonnull(3);
static void GuardDel(NsfCmdList *filterCL) nonnull(1);
/* prototypes for forwarders */
static void ForwardCmdDeleteProc(ClientData clientData) nonnull(1);
static int ForwardProcessOptions(Tcl_Interp *interp, Tcl_Obj *nameObj,
Tcl_Obj *withDefault, int withEarlybinding,
Tcl_Obj *withOnerror, Tcl_Obj *withMethodprefix,
int withFrame, int withVerbose,
Tcl_Obj *target, int objc, Tcl_Obj * CONST objv[],
ForwardCmdClientData **tcdPtr)
nonnull(1) nonnull(2) nonnull(11);
/* properties of objects and classes */
static int IsRootClass(NsfClass *cl) nonnull(1) pure;
static int IsRootMetaClass(NsfClass *cl) nonnull(1) pure;
static int IsBaseClass(NsfObject *cl) nonnull(1) pure;
static int IsMetaClass(Tcl_Interp *interp, NsfClass *cl, int withMixins) nonnull(1) nonnull(2);
static int IsSubType(NsfClass *subcl, NsfClass *cl) nonnull(1) nonnull(2);
static NsfClass *DefaultSuperClass(Tcl_Interp *interp, NsfClass *cl, NsfClass *mcl, int isMeta)
nonnull(1) nonnull(2) nonnull(3);
/* prototypes for call stack specific calls */
NSF_INLINE static void CscInit_(NsfCallStackContent *cscPtr, NsfObject *object, NsfClass *cl,
Tcl_Command cmd, int frameType, unsigned int flags)
nonnull(1) nonnull(2);
NSF_INLINE static void CscFinish_(Tcl_Interp *interp, NsfCallStackContent *cscPtr)
nonnull(1) nonnull(2);
NSF_INLINE static void CallStackDoDestroy(Tcl_Interp *interp, NsfObject *object)
nonnull(1) nonnull(2);
/* prototypes for parameter and argument management */
static int NsfParameterCacheClassInvalidateCmd(Tcl_Interp *interp, NsfClass *cl)
nonnull(1) nonnull(2);
static int ProcessMethodArguments(ParseContext *pcPtr, Tcl_Interp *interp,
NsfObject *object, int processFlags, NsfParamDefs *paramDefs,
Tcl_Obj *methodNameObj, int objc, Tcl_Obj *CONST objv[])
nonnull(1) nonnull(2) nonnull(5) nonnull(6) nonnull(8);
static int ParameterCheck(Tcl_Interp *interp, Tcl_Obj *paramObjPtr, Tcl_Obj *valueObj,
const char *argNamePrefix, int doCheckArguments,
int isNamed, int doConfigureParameter,
Nsf_Param **paramPtrPtr)
nonnull(1) nonnull(2) nonnull(3);
static void ParamDefsRefCountIncr(NsfParamDefs *paramDefs) nonnull(1);
static void ParamDefsRefCountDecr(NsfParamDefs *paramDefs) nonnull(1);
static void ParsedParamFree(NsfParsedParam *parsedParamPtr) nonnull(1);
static int ArgumentParse(Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[],
NsfObject *obj, Tcl_Obj *procName,
Nsf_Param const *paramPtr, int nrParameters, int serial,
unsigned int processFlags, ParseContext *pc)
nonnull(1) nonnull(3) nonnull(5) nonnull(6) nonnull(10);
static int ArgumentCheck(Tcl_Interp *interp, Tcl_Obj *objPtr, struct Nsf_Param const *pPtr, int doCheckArguments,
unsigned int *flags, ClientData *clientData, Tcl_Obj **outObjPtr)
nonnull(1) nonnull(2) nonnull(3) nonnull(5) nonnull(6) nonnull(7);
static int GetMatchObject(Tcl_Interp *interp, Tcl_Obj *patternObj, Tcl_Obj *origObj,
NsfObject **matchObject, const char **pattern)
nonnull(1) nonnull(4) nonnull(5);
static void NsfProcDeleteProc(ClientData clientData) nonnull(1);
static int NsfParameterCacheObjectInvalidateCmd(Tcl_Interp *interp, NsfObject *object)
nonnull(1) nonnull(2);
static int GetObjectParameterDefinition(Tcl_Interp *interp, Tcl_Obj *procNameObj,
NsfObject *object, NsfClass *class,
NsfParsedParam *parsedParamPtr)
nonnull(1) nonnull(2) nonnull(5);
typedef Tcl_Obj *(NsfFormatFunction) _ANSI_ARGS_((Tcl_Interp *interp, Nsf_Param const *paramsPtr,
NsfObject *contextObject, const char *pattern));
static Tcl_Obj *NsfParamDefsVirtualFormat(Tcl_Interp *interp, Nsf_Param const *pPtr,
NsfObject *contextObject, const char *pattern,
NsfFormatFunction formatFunction)
nonnull(1) nonnull(2) nonnull(3) nonnull(5);
static int NsfParamDefsAppendVirtual(Tcl_Interp *interp, Tcl_Obj *listObj,
Nsf_Param const *paramsPtr, NsfObject *contextObject,
const char *pattern,
NsfFormatFunction formatFunction)
nonnull(1) nonnull(2) nonnull(3) nonnull(6);
/* prototypes for alias management */
static int AliasDelete(Tcl_Interp *interp, Tcl_Obj *cmdName, const char *methodName, int withPer_object)
nonnull(1) nonnull(2) nonnull(3);
static Tcl_Obj *AliasGet(Tcl_Interp *interp, Tcl_Obj *cmdName, const char *methodName,
int withPer_object, int leaveError)
nonnull(1) nonnull(2) nonnull(3);
static int AliasDeleteObjectReference(Tcl_Interp *interp, Tcl_Command cmd)
nonnull(1) nonnull(2);
static int NsfMethodAliasCmd(Tcl_Interp *interp, NsfObject *object, int withPer_object,
const char *methodName, int withFrame, int withProtection, Tcl_Obj *cmdName)
nonnull(1) nonnull(2) nonnull(4);
static int AliasRefetch(Tcl_Interp *interp, NsfObject *object, const char *methodName,
AliasCmdClientData *tcd)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
NSF_INLINE static Tcl_Command AliasDereference(Tcl_Interp *interp, NsfObject *object,
const char *methodName, Tcl_Command cmd)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
/* prototypes for (class) list handling */
static NsfClasses ** NsfClassListAdd(NsfClasses **firstPtrPtr, NsfClass *cl, ClientData clientData)
nonnull(1) returns_nonnull;
/* misc prototypes */
static int SetInstVar(Tcl_Interp *interp, NsfObject *object, Tcl_Obj *nameObj, Tcl_Obj *valueObj)
nonnull(1) nonnull(2) nonnull(3);
static int ListDefinedMethods(Tcl_Interp *interp, NsfObject *object, const char *pattern,
int withPer_object, int methodType, int withCallproctection,
int withPath)
nonnull(1) nonnull(2);
static int NextSearchAndInvoke(Tcl_Interp *interp,
const char *methodName, int objc, Tcl_Obj *CONST objv[],
NsfCallStackContent *cscPtr, int freeArgumentVector)
nonnull(1) nonnull(2) nonnull(4) nonnull(5);
static void CmdListFree(NsfCmdList **cmdList, NsfFreeCmdListClientData *freeFct) nonnull(1);
static void NsfCommandPreserve(Tcl_Command cmd) nonnull(1);
static void NsfCommandRelease(Tcl_Command cmd) nonnull(1);
static Tcl_Command GetOriginalCommand(Tcl_Command cmd) nonnull(1) returns_nonnull;
EXTERN void NsfDStringArgv(Tcl_DString *dsPtr, int objc, Tcl_Obj *CONST objv[])
nonnull(1) nonnull(3);
static int MethodSourceMatches(int withSource, NsfClass *cl, NsfObject *object);
static NsfObjectOpt *NsfRequireObjectOpt(NsfObject *object) nonnull(1) returns_nonnull;
static int ObjectSystemsCheckSystemMethod(Tcl_Interp *interp, const char *methodName,
NsfObject *object, unsigned int flags)
nonnull(1) nonnull(2) nonnull(3);
#ifdef DO_CLEANUP
static void DeleteNsfProcs(Tcl_Interp *interp, Tcl_Namespace *nsPtr) nonnull(1);
#endif
#if defined(NSF_WITH_ASSERTIONS)
static void AssertionRemoveProc(NsfAssertionStore *aStore, const char *name)
nonnull(1) nonnull(2);
#endif
#ifdef DO_FULL_CLEANUP
static void DeleteProcsAndVars(Tcl_Interp *interp, Tcl_Namespace *nsPtr, int withKeepvars)
nonnull(1) nonnull(2);
#endif
/*
*----------------------------------------------------------------------
*
* NsfErrorContext --
*
* Print the current errorCode and errorInfo to stderr.
* This should be used as the last ressort, when e.g. logging fails
*
* Results:
* None.
*
* Side effects:
* Output to stderr
*
*----------------------------------------------------------------------
*/
static void NsfErrorContext(Tcl_Interp *interp, const char *context) nonnull(1) nonnull(2);
static void
NsfErrorContext(Tcl_Interp *interp, const char *context) {
Tcl_DString ds, *dsPtr = &ds;
assert(interp != NULL);
assert(context != NULL);
Tcl_DStringInit(dsPtr);
Tcl_DStringAppend(dsPtr, "puts stderr \"Error in ", -1);
Tcl_DStringAppend(dsPtr, context, -1);
Tcl_DStringAppend(dsPtr, ":\n$::errorCode $::errorInfo\"", -1);
Tcl_EvalEx(interp, Tcl_DStringValue(dsPtr), Tcl_DStringLength(dsPtr), 0);
Tcl_DStringFree(dsPtr);
}
#if 0
static char *
NsfErrorInfo(Tcl_Interp *interp) {
Tcl_Obj *valueObj;
assert(interp != NULL);
valueObj = Tcl_GetVar2Ex(interp, "::errorInfo", NULL, TCL_GLOBAL_ONLY);
if (valueObj != NULL) {
return ObjStr(valueObj);
}
return NULL;
}
#endif
/*
*----------------------------------------------------------------------
*
* NsfDStringEval --
*
* Evaluate the provided Tcl_DString as a Tcl command and output
* the error stack in case of a failure.
*
* Results:
* Tcl result code.
*
* Side effects:
* Output to stderr possible.
*
*----------------------------------------------------------------------
*/
static int NsfDStringEval(Tcl_Interp *interp, Tcl_DString *dsPtr, const char *context) nonnull(1) nonnull(2) nonnull(3);
static int
NsfDStringEval(Tcl_Interp *interp, Tcl_DString *dsPtr, const char *context) {
int result = Tcl_EvalEx(interp, Tcl_DStringValue(dsPtr), Tcl_DStringLength(dsPtr), 0);
assert(interp != NULL);
assert(dsPtr != NULL);
assert(context != NULL);
if (unlikely(result == TCL_ERROR)) {
NsfErrorContext(interp, context);
}
return result;
}
/*
*----------------------------------------------------------------------
*
* NsfLog --
*
* Produce a formatted warning by calling an external function
* ::nsf::log. It is defined static to allow for inlining.
*
* Results:
* None.
*
* Side effects:
* Output of the warning.
*
*----------------------------------------------------------------------
*/
void
NsfLog(Tcl_Interp *interp, int requiredLevel, const char *fmt, ...) {
assert(interp != NULL);
assert(fmt != NULL);
if (RUNTIME_STATE(interp)->debugLevel >= requiredLevel) {
Tcl_DString cmdString, ds;
const char *level;
va_list ap;
switch (requiredLevel) {
case NSF_LOG_DEBUG: level = "Debug"; break;
case NSF_LOG_NOTICE: level = "Notice"; break;
default: level = "Warning"; break;
}
Tcl_DStringInit(&ds);
va_start(ap, fmt);
NsfDStringVPrintf(&ds, fmt, ap);
va_end(ap);
Tcl_DStringInit(&cmdString);
Tcl_DStringAppendElement(&cmdString, "::nsf::log");
Tcl_DStringAppendElement(&cmdString, level);
Tcl_DStringAppendElement(&cmdString, Tcl_DStringValue(&ds));
NsfDStringEval(interp, &cmdString, "log command");
Tcl_DStringFree(&cmdString);
Tcl_DStringFree(&ds);
}
}
/*
*----------------------------------------------------------------------
*
* NsfDeprecatedCmd --
*
* Provide a warning about a deprecated command or method. The
* message is produced via calling the external Tcl function
* ::nsf::deprecated.
*
* Results:
* None.
*
* Side effects:
* Output of the warning.
*
*----------------------------------------------------------------------
*/
static void NsfDeprecatedCmd(Tcl_Interp *interp, const char *what, const char *oldCmd, const char *newCmd)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static void
NsfDeprecatedCmd(Tcl_Interp *interp, const char *what, const char *oldCmd, const char *newCmd) {
Tcl_DString ds, *dsPtr = &ds;
assert(interp != NULL);
assert(newCmd != NULL);
assert(what != NULL);
assert(oldCmd != NULL);
Tcl_DStringInit(dsPtr);
Tcl_DStringAppendElement(dsPtr, "::nsf::deprecated");
Tcl_DStringAppendElement(dsPtr, what);
Tcl_DStringAppendElement(dsPtr, oldCmd);
Tcl_DStringAppendElement(dsPtr, newCmd);
NsfDStringEval(interp, dsPtr, "log command");
Tcl_DStringFree(dsPtr);
}
/***********************************************************************
* argv parsing
***********************************************************************/
/*
*----------------------------------------------------------------------
*
* ParseContextInit --
*
* Initialize a ParseContext with default values and allocate
* memory if needed. Every ParseContext has to be initialized
* before usage and has to be freed with ParseContextRelease().
*
* Results:
* None.
*
* Side effects:
* Allocate potentially memory.
*
*----------------------------------------------------------------------
*/
static void ParseContextInit(ParseContext *pcPtr, int objc, NsfObject *object, Tcl_Obj *procName)
nonnull(1) nonnull(4);
static void
ParseContextInit(ParseContext *pcPtr, int objc, NsfObject *object, Tcl_Obj *procName) {
assert(pcPtr != NULL);
assert(procName != NULL);
if (likely(objc < PARSE_CONTEXT_PREALLOC)) {
/* the single larger memset below .... */
memset(pcPtr, 0, sizeof(ParseContext));
/* ... is faster than the two smaller memsets below */
/* memset(pcPtr->clientData_static, 0, sizeof(ClientData)*(objc));
memset(pcPtr->objv_static, 0, sizeof(Tcl_Obj *)*(objc+1));*/
pcPtr->full_objv = &pcPtr->objv_static[0];
pcPtr->clientData = &pcPtr->clientData_static[0];
pcPtr->flags = &pcPtr->flags_static[0];
} else {
pcPtr->full_objv = (Tcl_Obj **)ckalloc(sizeof(Tcl_Obj *)*(objc+1));
pcPtr->flags = (unsigned int *)ckalloc(sizeof(int)*(objc+1));
MEM_COUNT_ALLOC("pcPtr.objv", pcPtr->full_objv);
pcPtr->clientData = (ClientData *)ckalloc(sizeof(ClientData)*objc);
MEM_COUNT_ALLOC("pcPtr.clientData", pcPtr->clientData);
/*fprintf(stderr, "ParseContextMalloc %d objc, %p %p\n", objc, pcPtr->full_objv, pcPtr->clientData);*/
memset(pcPtr->full_objv, 0, sizeof(Tcl_Obj *)*(objc+1));
memset(pcPtr->flags, 0, sizeof(int)*(objc+1));
memset(pcPtr->clientData, 0, sizeof(ClientData)*(objc));
pcPtr->status = NSF_PC_STATUS_FREE_OBJV|NSF_PC_STATUS_FREE_CD;
pcPtr->varArgs = 0;
pcPtr->objc = 0;
}
pcPtr->objv = &pcPtr->full_objv[1];
pcPtr->full_objv[0] = procName;
pcPtr->object = object;
}
/*
*----------------------------------------------------------------------
*
* ParseContextExtendObjv --
*
* Extend Tcl_Obj array at runtime, when more elements are
* needed. This function is called to extend an already
* initialized ParseContext.
*
* Results:
* None.
*
* Side effects:
* Allocate potentially memory.
*
*----------------------------------------------------------------------
*/
static void ParseContextExtendObjv(ParseContext *pcPtr, int from, int elts, Tcl_Obj *CONST source[]) nonnull(1) nonnull(4);
static void
ParseContextExtendObjv(ParseContext *pcPtr, int from, int elts, Tcl_Obj *CONST source[]) {
int requiredSize = from + elts + 1;
assert(pcPtr != NULL);
assert(source != NULL);
/*NsfPrintObjv("BEFORE: ", pcPtr->objc, pcPtr->full_objv);*/
if (unlikely(requiredSize >= PARSE_CONTEXT_PREALLOC)) {
if (pcPtr->objv == &pcPtr->objv_static[1]) {
/* realloc from preallocated memory */
pcPtr->full_objv = (Tcl_Obj **) ckalloc(sizeof(Tcl_Obj *) * requiredSize);
pcPtr->flags = (unsigned int *)ckalloc(sizeof(int) * requiredSize);
MEM_COUNT_ALLOC("pcPtr.objv", pcPtr->full_objv);
memcpy(pcPtr->full_objv, &pcPtr->objv_static[0], sizeof(Tcl_Obj *) * PARSE_CONTEXT_PREALLOC);
memcpy(pcPtr->flags, &pcPtr->flags_static[0], sizeof(int) * PARSE_CONTEXT_PREALLOC);
/* fprintf(stderr, "ParseContextExtendObjv: extend %p alloc %d new objv=%p pcPtr %p\n",
pcPtr, requiredSize, pcPtr->full_objv, pcPtr);*/
pcPtr->status |= NSF_PC_STATUS_FREE_OBJV;
} else {
/* realloc from mallocated memory */
pcPtr->full_objv = (Tcl_Obj **) ckrealloc((char *)pcPtr->full_objv, sizeof(Tcl_Obj *) * requiredSize);
pcPtr->flags = (unsigned int *)ckrealloc((char *)pcPtr->flags, sizeof(int) * requiredSize);
/*fprintf(stderr, "ParseContextExtendObjv: extend %p realloc %d new objv=%p pcPtr %p\n",
pcPtr, requiredSize, pcPtr->full_objv, pcPtr);*/
}
pcPtr->objv = &pcPtr->full_objv[1];
}
memcpy(pcPtr->objv + from, source, sizeof(Tcl_Obj *) * elts);
memset(pcPtr->flags + from, 0, sizeof(int) * elts);
pcPtr->objc += elts;
/*NsfPrintObjv("AFTER: ", pcPtr->objc, pcPtr->full_objv);*/
}
/*
*----------------------------------------------------------------------
*
* ParseContextRelease --
*
* Release (and potentially free) the content of a
* ParseContext. This function is the counterpart of
* ParseContextInit(),
*
* Results:
* None.
*
* Side effects:
* Free potentially memory.
*
*----------------------------------------------------------------------
*/
static void ParseContextRelease(ParseContext *pcPtr) nonnull(1);
static void
ParseContextRelease(ParseContext *pcPtr) {
int status;
assert(pcPtr != NULL);
status = pcPtr->status;
/*fprintf(stderr, "ParseContextRelease %p status %.6x %d elements\n",
pcPtr, status, pcPtr->objc);*/
#if !defined(NDEBUG)
{
/*
* Perform a general consistency check: although the contents of the parse
* context are at release time sometimes only partially initialized, the
* following holds true for ensuring correct release of Tcl_Objs:
*
* 1) if one of the objv-flags has NSF_PC_MUST_DECR set,
* then the status flag NSF_PC_STATUS_MUST_DECR has to
* be set as well.
*
* 2) if objc > 0 then for all objv entries having a flag
* different from 0 must have a
* TCL_OBJ in the vector.
*
* 3) for preallocated objvs, all elements of the objv
* after the argument vector must be 0 or
* NSF_PC_IS_DEFAULT (sanity check)
*/
/*
* (1) make sure, that the status correctly reflects MUST_DECR
*/
int i;
if (status == 0 || (status & NSF_PC_STATUS_MUST_DECR) == 0) {
for (i = 0; i < pcPtr->objc - 1; i++) {
assert((pcPtr->flags[i] & NSF_PC_MUST_DECR) == 0);
}
}
/*
* (2) make sure, Tcl_Objs are set when needed for reclaiming memory
*/
if (pcPtr->objc > 0) {
/*fprintf(stderr, "%s ", ObjStr(pcPtr->full_objv[0]));*/
for (i = 0; i < pcPtr->objc; i++) {
if (pcPtr->flags[i]) {
assert(pcPtr->objv[i]);
/*fprintf(stderr, "[%d]%s %.6x ", i, ObjStr(pcPtr->objv[i]), pcPtr->flags[i]);*/
}
}
}
/*
* (3) All later flags must be empty or DEFAULT
*/
if (pcPtr->full_objv == &pcPtr->objv_static[0] && pcPtr->objc > 0) {
for (i = pcPtr->objc; i < PARSE_CONTEXT_PREALLOC; i++) {
assert(pcPtr->flags[i] == 0 || pcPtr->flags[i] == NSF_PC_IS_DEFAULT);
}
}
}
#endif
if (unlikely(status)) {
if (status & NSF_PC_STATUS_MUST_DECR) {
int i;
/*fprintf(stderr, "ParseContextRelease %p loop from 0 to %d\n", pcPtr, pcPtr->objc-1);*/
for (i = 0; i < pcPtr->objc; i++) {
/*fprintf(stderr, "ParseContextRelease %p check [%d] obj %p flags %.6x & %p\n",
pcPtr, i, pcPtr->objv[i],
pcPtr->flags[i], &(pcPtr->flags[i]));*/
if (pcPtr->flags[i] & NSF_PC_MUST_DECR) {
assert(pcPtr->objv[i]);
assert(pcPtr->objv[i]->refCount > 0);
/*fprintf(stderr, "... decr ref count on %p\n", pcPtr->objv[i]);*/
DECR_REF_COUNT2("valueObj", pcPtr->objv[i]);
}
}
}
/*
* Objv can be separately extended; also flags are extend when this
* happens.
*/
if (unlikely(status & NSF_PC_STATUS_FREE_OBJV)) {
/*fprintf(stderr, "ParseContextRelease %p free %p %p\n",
pcPtr, pcPtr->full_objv, pcPtr->clientData);*/
MEM_COUNT_FREE("pcPtr.objv", pcPtr->full_objv);
ckfree((char *)pcPtr->full_objv);
ckfree((char *)pcPtr->flags);
}
/*
* If the parameter definition was extended at creation time also
* clientData is extended.
*/
if (status & NSF_PC_STATUS_FREE_CD) {
/*fprintf(stderr, "free client-data for %p\n", pcPtr);*/
MEM_COUNT_FREE("pcPtr.clientData", pcPtr->clientData);
ckfree((char *)pcPtr->clientData);
}
}
}
/*
*----------------------------------------------------------------------
*
* CallMethod --
*
* Call a Next Scripting method. clientData has to contain the object, on
* which the method is to be dispatched, methodDobj denotes the method,
* objc ( which has to be >=2) and objv denotes the argument vector.
*
* Results:
* Tcl return code
*
* Side effects:
* potentially via the called method.
*
*----------------------------------------------------------------------
*/
/*
* call an Next Scripting method
*/
static int
CallMethod(ClientData clientData, Tcl_Interp *interp, Tcl_Obj *methodObj,
int objc, Tcl_Obj *CONST objv[], unsigned int flags)
nonnull(1) nonnull(2) nonnull(3);
static int
CallMethod(ClientData clientData, Tcl_Interp *interp, Tcl_Obj *methodObj,
int objc, Tcl_Obj *CONST objv[], unsigned int flags) {
NsfObject *object;
int result;
ALLOC_ON_STACK(Tcl_Obj*, objc, tov);
assert(clientData != NULL);
assert(interp != NULL);
assert(methodObj != NULL);
assert(objc > 1);
object = (NsfObject *) clientData;
tov[0] = object->cmdName;
tov[1] = methodObj;
if (likely(objc > 2)) {
memcpy(tov+2, objv, sizeof(Tcl_Obj *)*(objc - 2));
}
/*fprintf(stderr, "%%%% CallMethod cmdName=%s, method=%s, objc=%d\n",
ObjStr(tov[0]), ObjStr(tov[1]), objc);
{int i; fprintf(stderr, "\t CALL: %s ", ObjStr(methodObj));for(i = 0; i < objc-2; i++) {
fprintf(stderr, "%s ", ObjStr(objv[i]));} fprintf(stderr, "\n");}*/
result = ObjectDispatch(clientData, interp, objc, tov, flags);
FREE_ON_STACK(Tcl_Obj*, tov);
return result;
}
/*
*----------------------------------------------------------------------
*
* NsfCallMethodWithArgs --
*
* Call method (passed in methodObj) on the object, with the often
* provided arg1 and the optional remaining args (passed vis objv). This
* way, we save the memcpy in case no argument or an single argument are
* provided (common cases).
*
* Results:
* Tcl result.
*
* Side effects:
* Called method might side effect.
*
*----------------------------------------------------------------------
*/
int NsfCallMethodWithArgs(Tcl_Interp *interp, Nsf_Object *object, Tcl_Obj *methodObj,
Tcl_Obj *arg1, int givenObjc, Tcl_Obj *CONST objv[], unsigned int flags)
nonnull(1) nonnull(2) nonnull(3);
int
NsfCallMethodWithArgs(Tcl_Interp *interp, Nsf_Object *object, Tcl_Obj *methodObj,
Tcl_Obj *arg1, int givenObjc, Tcl_Obj *CONST objv[], unsigned int flags) {
int objc = givenObjc + 2;
int result;
ALLOC_ON_STACK(Tcl_Obj*, objc, tov);
assert(interp != NULL);
assert(object != NULL);
assert(ISOBJ(methodObj));
assert(objc > 1);
tov[0] = object->cmdName;
tov[1] = methodObj;
if (objc > 2) {
tov[2] = arg1;
}
if (objc > 3) {
memcpy(tov+3, objv, sizeof(Tcl_Obj *)*(objc-3));
}
/*fprintf(stderr, "%%%% CallMethodWithArgs cmdName=%s, method=%s, arg1 %s objc=%d\n",
ObjStr(tov[0]), ObjStr(tov[1]), (objc > 2) ? ObjStr(tov[2]) : "", objc);*/
result = ObjectDispatch(object, interp, objc, tov, flags);
FREE_ON_STACK(Tcl_Obj*, tov);
return result;
}
/*
* Support for variable hash tables
*/
static NSF_INLINE Var *VarHashCreateVar(TclVarHashTable *tablePtr, Tcl_Obj *key, int *newPtr) nonnull(1) nonnull(2);
static NSF_INLINE Var *
VarHashCreateVar(TclVarHashTable *tablePtr, Tcl_Obj *key, int *newPtr) {
Var *varPtr = NULL;
Tcl_HashEntry *hPtr;
assert(tablePtr != NULL);
assert(key != NULL);
hPtr = Tcl_CreateHashEntry((Tcl_HashTable *) tablePtr,
(char *) key, newPtr);
if (likely(hPtr != NULL)) {
varPtr = TclVarHashGetValue(hPtr);
}
return varPtr;
}
static NSF_INLINE TclVarHashTable *
VarHashTableCreate() {
TclVarHashTable *varTablePtr = (TclVarHashTable *) ckalloc(sizeof(TclVarHashTable));
TclInitVarHashTable(varTablePtr, NULL);
return varTablePtr;
}
#include "nsfCmdPtr.c"
#include "nsfStack.c"
/***********************************************************************
* Value added replacements of Tcl functions
***********************************************************************/
/*
*----------------------------------------------------------------------
* Nsf_NextHashEntry --
*
* Function very similar to Tcl_NextHashEntry. If during the iteration of
* hash entries some of these entries are removed, Tcl_NextHashEntry() can
* lead to a valid looking but invalid hPtr, when the next entry was
* already deleted. This seem to occur only, when there are more than 12
* hash entries in the table (multiple buckets). Therefore, we use
* numEntries to check, if it is sensible to return a an hash entry. We can
* trigger refetch of the hSrchPtr, when the number of expected entries
* differs from the numbers of the actual entries.
*
* Results:
* Hash Entry or NULL.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static Tcl_HashEntry * Nsf_NextHashEntry(Tcl_HashTable *tablePtr, int expected, Tcl_HashSearch *hSrchPtr)
nonnull(1) nonnull(3);
static Tcl_HashEntry *
Nsf_NextHashEntry(Tcl_HashTable *tablePtr, int expected, Tcl_HashSearch *hSrchPtr) {
assert(tablePtr != NULL);
assert(hSrchPtr != NULL);
/*fprintf(stderr, "Nsf_NextHashEntry %p expected %d numEntries %d\n",
tablePtr, expected, tablePtr->numEntries);*/
if (tablePtr->numEntries < 1) {
return NULL;
} else if (tablePtr->numEntries != expected) {
return Tcl_FirstHashEntry(tablePtr, hSrchPtr);
} else {
return Tcl_NextHashEntry(hSrchPtr);
}
}
/*
*----------------------------------------------------------------------
* NsfCommandPreserve --
*
* Increment Tcl's command refCount
*
* Results:
* void
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static void
NsfCommandPreserve(Tcl_Command cmd) {
assert(cmd != NULL);
Tcl_Command_refCount(cmd)++;
MEM_COUNT_ALLOC("command.refCount", cmd);
}
/*
*----------------------------------------------------------------------
* NsfCommandRelease --
*
* Decrement Tcl command refCount and free it if necessary
*
* Results:
* void
*
* Side effects:
* Free pot. memory
*
*----------------------------------------------------------------------
*/
static void
NsfCommandRelease(Tcl_Command cmd) {
assert(cmd != NULL);
/*fprintf(stderr,"NsfCommandRelease %p\n", cmd);*/
MEM_COUNT_FREE("command.refCount", cmd);
TclCleanupCommandMacro((Command *)cmd);
}
/***********************************************************************
* EXTERN callable routines for the preliminary C interface
***********************************************************************/
Nsf_Object * NsfGetSelfObj(Tcl_Interp *interp) nonnull(1);
Nsf_Object * NsfGetObject(Tcl_Interp *interp, const char *name) nonnull(1) nonnull(2);
Nsf_Class * NsfGetClass(Tcl_Interp *interp, const char *name) nonnull(1) nonnull(2);
Nsf_Class * NsfIsClass(Tcl_Interp *interp, ClientData clientData) nonnull(1) nonnull(2);
void NsfRequireObjNamespace(Tcl_Interp *interp, Nsf_Object *object) nonnull(1) nonnull(2);
Tcl_Obj * Nsf_ObjSetVar2(Nsf_Object *object, Tcl_Interp *interp, Tcl_Obj *name1, Tcl_Obj *name2,
Tcl_Obj *valueObj, unsigned int flags)
nonnull(1) nonnull(2) nonnull(3) nonnull(5);
Tcl_Obj * Nsf_ObjGetVar2(Nsf_Object *object, Tcl_Interp *interp, Tcl_Obj *name1, Tcl_Obj *name2, unsigned int flags)
nonnull(1) nonnull(2) nonnull(3);
int NsfCreate(Tcl_Interp *interp, Nsf_Class *class, Tcl_Obj *nameObj, int objc, Tcl_Obj *CONST objv[])
nonnull(1) nonnull(2) nonnull(3) nonnull(5);
int NsfDeleteObject(Tcl_Interp *interp, Nsf_Object *object) nonnull(1) nonnull(2);
int NsfRemoveObjectMethod(Tcl_Interp *interp, Nsf_Object *object1, const char *methodName)
nonnull(1) nonnull(2) nonnull(3);
int NsfRemoveClassMethod(Tcl_Interp *interp, Nsf_Class *class, const char *methodName)
nonnull(1) nonnull(2) nonnull(3);
int Nsf_UnsetVar2(Nsf_Object *object1, Tcl_Interp *interp,
const char *name1, const char *name2, unsigned int flags)
nonnull(1) nonnull(2) nonnull(4);
void NsfSetObjClientData(Tcl_Interp *interp, Nsf_Object *object, ClientData data) nonnull(1) nonnull(2);
ClientData NsfGetObjClientData(Tcl_Interp *interp, Nsf_Object *object) nonnull(1) nonnull(2);
void NsfSetClassClientData(Tcl_Interp *interp, Nsf_Class *cl, ClientData data) nonnull(1) nonnull(2);
ClientData NsfGetClassClientData(Tcl_Interp *interp, Nsf_Class *cl) nonnull(1) nonnull(2);
Nsf_Object *
NsfGetSelfObj(Tcl_Interp *interp) {
assert(interp != NULL);
return (Nsf_Object *) GetSelfObj(interp);
}
Nsf_Object *
NsfGetObject(Tcl_Interp *interp, const char *name) {
assert(interp != NULL);
assert(name != NULL);
return (Nsf_Object *) GetObjectFromString(interp, name);
}
Nsf_Class *
NsfGetClass(Tcl_Interp *interp, const char *name) {
assert(interp != NULL);
assert(name != NULL);
return (Nsf_Class *)GetClassFromString(interp, name);
}
Nsf_Class *
NsfIsClass(Tcl_Interp *UNUSED(interp), ClientData clientData) {
assert(clientData != NULL);
if (NsfObjectIsClass((NsfObject *)clientData)) {
return (Nsf_Class *) clientData;
}
return NULL;
}
void
NsfRequireObjNamespace(Tcl_Interp *interp, Nsf_Object *object) {
assert(interp != NULL);
assert(object != NULL);
RequireObjNamespace(interp, (NsfObject *) object);
}
Tcl_Obj *
Nsf_ObjSetVar2(Nsf_Object *object, Tcl_Interp *interp, Tcl_Obj *name1, Tcl_Obj *name2,
Tcl_Obj *valueObj, unsigned int flags) {
Tcl_Obj *result;
CallFrame frame, *framePtr = &frame;
assert(object != NULL);
assert(interp != NULL);
assert(name1 != NULL);
assert(valueObj != NULL);
Nsf_PushFrameObj(interp, (NsfObject *)object, framePtr);
if (((NsfObject *)object)->nsPtr) {
flags |= TCL_NAMESPACE_ONLY;
}
result = Tcl_ObjSetVar2(interp, name1, name2, valueObj, flags);
Nsf_PopFrameObj(interp, framePtr);
return result;
}
Tcl_Obj *
Nsf_ObjGetVar2(Nsf_Object *object, Tcl_Interp *interp, Tcl_Obj *name1, Tcl_Obj *name2,
unsigned int flags) {
Tcl_Obj *result;
CallFrame frame, *framePtr = &frame;
assert(object != NULL);
assert(interp != NULL);
assert(name1 != NULL);
Nsf_PushFrameObj(interp, (NsfObject *)object, framePtr);
if (((NsfObject *)object)->nsPtr) {
flags |= TCL_NAMESPACE_ONLY;
}
result = Tcl_ObjGetVar2(interp, name1, name2, flags);
Nsf_PopFrameObj(interp, framePtr);
return result;
}
int
Nsf_UnsetVar2(Nsf_Object *object1, Tcl_Interp *interp,
const char *name1, const char *name2, unsigned int flags) {
CallFrame frame, *framePtr = &frame;
NsfObject *object;
int result;
assert(object1 != NULL);
assert(interp != NULL);
assert(name1 != NULL);
assert(name2 != NULL);
object = (NsfObject *) object1;
Nsf_PushFrameObj(interp, object, framePtr);
if (object->nsPtr != NULL) {
flags |= TCL_NAMESPACE_ONLY;
}
result = Tcl_UnsetVar2(interp, name1, name2, flags);
Nsf_PopFrameObj(interp, framePtr);
return result;
}
int
NsfCreate(Tcl_Interp *interp, Nsf_Class *class, Tcl_Obj *nameObj,
int objc, Tcl_Obj *CONST objv[]) {
NsfClass *cl = (NsfClass *) class;
int result;
ALLOC_ON_STACK(Tcl_Obj *, objc+2, ov);
assert(interp != NULL);
assert(class != NULL);
assert(nameObj != NULL);
assert(objv != NULL);
INCR_REF_COUNT2("nameObj", nameObj);
ov[0] = NULL;
ov[1] = nameObj;
if (objc > 0) {
memcpy(ov+2, objv, sizeof(Tcl_Obj *)*objc);
}
result = NsfCCreateMethod(interp, cl, nameObj, objc+2, ov);
FREE_ON_STACK(Tcl_Obj*, ov);
DECR_REF_COUNT2("nameObj", nameObj);
return result;
}
int
NsfDeleteObject(Tcl_Interp *interp, Nsf_Object *object) {
assert(interp != NULL);
assert(object != NULL);
return DispatchDestroyMethod(interp, (NsfObject *)object, 0);
}
int
NsfRemoveObjectMethod(Tcl_Interp *interp, Nsf_Object *object1, const char *methodName) {
NsfObject *object;
assert(interp != NULL);
assert(object1 != NULL);
assert(methodName != NULL);
object = (NsfObject *) object1;
/*fprintf(stderr, "... NsfRemoveObjectMethod %s %s\n", ObjectName(object), methodName);*/
NsfObjectMethodEpochIncr("NsfRemoveObjectMethod");
AliasDelete(interp, object->cmdName, methodName, 1);
#if defined(NSF_WITH_ASSERTIONS)
if (object->opt && object->opt->assertions) {
AssertionRemoveProc(object->opt->assertions, methodName);
}
#endif
if (object->nsPtr != NULL) {
int rc = NSDeleteCmd(interp, object->nsPtr, methodName);
if (rc < 0) {
return NsfPrintError(interp, "%s: cannot delete object specific method '%s'",
ObjectName(object), methodName);
}
}
return TCL_OK;
}
int
NsfRemoveClassMethod(Tcl_Interp *interp, Nsf_Class *class, const char *methodName) {
NsfClass *cl;
int rc;
#if defined(NSF_WITH_ASSERTIONS)
NsfClassOpt *opt;
#endif
assert(interp != NULL);
assert(class != NULL);
assert(methodName != NULL);
cl = (NsfClass *)class;
/*fprintf(stderr, "... NsfRemoveClassMethod %s %s\n", ClassName(class), methodName);*/
NsfInstanceMethodEpochIncr("NsfRemoveClassMethod");
AliasDelete(interp, class->object.cmdName, methodName, 0);
#if defined(NSF_WITH_ASSERTIONS)
opt = cl->opt;
if (opt && opt->assertions) {
AssertionRemoveProc(opt->assertions, methodName);
}
#endif
rc = NSDeleteCmd(interp, cl->nsPtr, methodName);
if (rc < 0) {
return NsfPrintError(interp, "%s: cannot delete method '%s'", ClassName(cl), methodName);
}
return TCL_OK;
}
/*
* obj/cl ClientData setter/getter
*/
void
NsfSetObjClientData(Tcl_Interp *interp, Nsf_Object *object, ClientData data) {
assert(interp != NULL);
assert(object != NULL);
assert(data != NULL);
NsfRequireObjectOpt((NsfObject *) object) -> clientData = data;
}
ClientData
NsfGetObjClientData(Tcl_Interp *interp, Nsf_Object *object) {
NsfObject *object_;
assert(interp != NULL);
assert(object != NULL);
object_ = (NsfObject *) object;
return (object_->opt != NULL) ? object_->opt->clientData : NULL;
}
void
NsfSetClassClientData(Tcl_Interp *interp, Nsf_Class *cl, ClientData data) {
assert(interp != NULL);
assert(cl != NULL);
NsfRequireClassOpt((NsfClass *)cl) -> clientData = data;
}
ClientData
NsfGetClassClientData(Tcl_Interp *interp, Nsf_Class *cl) {
NsfClass *cl_;
assert(interp != NULL);
assert(cl != NULL);
cl_ = (NsfClass *) cl;
return (cl_->opt != NULL) ? cl_->opt->clientData : NULL;
}
/***********************************************************************
* Utility functions
***********************************************************************/
#if defined(NSFOBJ_TRACE)
void ObjTrace(char *string, NsfObject *object) nonnull(1) nonnull(2);
void
ObjTrace(char *string, NsfObject *object) {
assert(string != NULL);
assert(object != NULL);
fprintf(stderr, "--- %s tcl %p %s (%d %p) nsf %p (%d) %s \n", string,
object->cmdName, (object->cmdName->typePtr != NULL) ? object->cmdName->typePtr->name : "NULL",
object->cmdName->refCount, object->cmdName->internalRep.twoPtrValue.ptr1,
object, object->refCount, ObjectName(object));
}
#else
# define ObjTrace(a, b)
#endif
/*
*----------------------------------------------------------------------
* NSTail --
*
* Return the namespace tail of a name.
*
* Results:
* String.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
/* search for tail of name */
static const char * NSTail(const char *string) nonnull(1);
static const char *
NSTail(const char *string) {
register const char *p;
assert(string != NULL);
p = string + strlen(string);
while (p > string) {
if (unlikely(*p == ':' && *(p-1) == ':')) {
return p+1;
}
p--;
}
return string;
}
/*
*----------------------------------------------------------------------
* IsClassNsName --
*
* Check, if the provided string starts with the prefix of the
* classes namespace.
*
* Results:
* Boolean.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
NSF_INLINE static int IsClassNsName(const char *string, const char **cont) nonnull(1);
NSF_INLINE static int
IsClassNsName(const char *string, const char **cont) {
assert(string != NULL);
if (*string == ':' && strncmp((string), "::nsf::classes", 14) == 0) {
if (cont != NULL) {*cont = string + 14;}
return 1;
}
return 0;
}
/*
*----------------------------------------------------------------------
* GetObjectFromNsName --
*
* Get object or class from a fully qualified cmd name, such as
* e.g. ::nsf::classes::X
*
* Results:
* NsfObject and *fromClasses
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
NSF_INLINE static NsfObject * GetObjectFromNsName(Tcl_Interp *interp, const char *string, int *fromClassNS)
nonnull(1) nonnull(2) nonnull(3);
NSF_INLINE static NsfObject *
GetObjectFromNsName(Tcl_Interp *interp, const char *string, int *fromClassNS) {
const char *className;
assert(interp != NULL);
assert(string != NULL);
assert(fromClassNS != NULL);
if (IsClassNsName(string, &className)) {
*fromClassNS = 1;
return (NsfObject *)GetClassFromString(interp, className);
} else {
*fromClassNS = 0;
return GetObjectFromString(interp, string);
}
}
/*
*----------------------------------------------------------------------
* DStringAppendQualName --
*
* Append to initialized DString the name of the namespace followed
* by a simple name (methodName, cmdName).
*
* Results:
* String pointing to DString value.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static char *DStringAppendQualName(Tcl_DString *dsPtr, Tcl_Namespace *nsPtr, const char *name)
nonnull(1) nonnull(2) nonnull(3);
static char *
DStringAppendQualName(Tcl_DString *dsPtr, Tcl_Namespace *nsPtr, const char *name) {
int oldLength = Tcl_DStringLength(dsPtr);
assert(dsPtr != NULL);
assert(nsPtr != NULL);
assert(name != NULL);
Tcl_DStringAppend(dsPtr, nsPtr->fullName, -1);
if (Tcl_DStringLength(dsPtr) > (oldLength + 2)) {
Tcl_DStringAppend(dsPtr, "::", 2);
}
Tcl_DStringAppend(dsPtr, name, -1);
return Tcl_DStringValue(dsPtr);
}
/*
*----------------------------------------------------------------------
* NsfCleanupObject --
*
* Delete an object physically (performing ckfree()) when its refCount
* reaches 0
*
* Results:
* None.
*
* Side effects:
* Frees memory.
*
*----------------------------------------------------------------------
*/
void
NsfCleanupObject_(NsfObject *object) {
assert(object != NULL);
NsfObjectRefCountDecr(object);
/*fprintf(stderr, "NsfCleanupObject obj refCount of %p after decr %d id %p interp %p flags %.6x\n",
object, object->refCount, object->id, object->teardown, object->flags);*/
if (unlikely(object->refCount <= 0)) {
/*fprintf(stderr, "NsfCleanupObject %p ref-count %d\n", object, object->refCount);*/
assert(object->refCount == 0);
assert(object->flags & NSF_DELETED);
/*
* During FinalObjectDeletion(), object->teardown is NULL, we cannot access
* the object and class names anymore.
*/
if (object->teardown && NSF_DTRACE_OBJECT_FREE_ENABLED()) {
NSF_DTRACE_OBJECT_FREE(ObjectName(object), ClassName(object->cl));
}
MEM_COUNT_FREE("NsfObject/NsfClass", object);
#if defined(NSFOBJ_TRACE)
fprintf(stderr, "CKFREE Object %p refCount=%d\n", object, object->refCount);
#endif
#if !defined(NDEBUG)
memset(object, 0, sizeof(NsfObject));
#endif
ckfree((char *) object);
}
}
/*
* Tcl_Obj functions for objects
*/
/*
*----------------------------------------------------------------------
* TclObjIsNsfObject --
*
* Check, if the provided Tcl_Obj is bound to a nsf object. If so, return
* the NsfObject in the third argument.
*
* Results:
* True or false,
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static int TclObjIsNsfObject(Tcl_Interp *interp, Tcl_Obj *objPtr, NsfObject **objectPtr)
nonnull(1) nonnull(2) nonnull(3);
static int
TclObjIsNsfObject(Tcl_Interp *interp, Tcl_Obj *objPtr, NsfObject **objectPtr) {
Tcl_ObjType CONST86 *cmdType;
assert(interp != NULL);
assert(objPtr != NULL);
assert(objectPtr != NULL);
cmdType = objPtr->typePtr;
if (cmdType == Nsf_OT_tclCmdNameType) {
Tcl_Command cmd = Tcl_GetCommandFromObj(interp, objPtr);
if (likely(cmd != NULL)) {
NsfObject *object = NsfGetObjectFromCmdPtr(cmd);
if (object != NULL) {
*objectPtr = object;
return 1;
}
}
}
return 0;
}
/*
*----------------------------------------------------------------------
* GetObjectFromObj --
*
* Lookup an Next Scripting object from the given objPtr, preferably from
* an object of type "cmdName". On success the NsfObject is returned in the
* third argument. The objPtr might be converted by this function.
*
* Results:
* True or false,
*
* Side effects:
* object type of objPtr might be changed
*
*----------------------------------------------------------------------
*/
static int GetObjectFromObj(Tcl_Interp *interp, Tcl_Obj *objPtr, NsfObject **objectPtr)
nonnull(1) nonnull(2) nonnull(3);
static int
GetObjectFromObj(Tcl_Interp *interp, Tcl_Obj *objPtr, NsfObject **objectPtr) {
NsfObject *object;
const char *string;
Tcl_Command cmd;
assert(interp != NULL);
assert(objPtr != NULL);
assert(objectPtr != NULL);
/*fprintf(stderr, "GetObjectFromObj obj %p %s is of type %s\n",
objPtr, ObjStr(objPtr), (objPtr->typePtr != NULL) ? objPtr->typePtr->name : "(null)");*/
/* in case, objPtr was not of type cmdName, try to convert */
cmd = Tcl_GetCommandFromObj(interp, objPtr);
/*fprintf(stderr, "GetObjectFromObj obj %s => cmd=%p (%d)\n",
ObjStr(objPtr), cmd, (cmd != NULL) ? Tcl_Command_refCount(cmd):-1);*/
if (cmd != NULL) {
NsfObject *object = NsfGetObjectFromCmdPtr(cmd);
/*fprintf(stderr, "GetObjectFromObj obj %s, o is %p objProc %p NsfObjDispatch %p\n", ObjStr(objPtr),
object, Tcl_Command_objProc(cmd), NsfObjDispatch);*/
if (object != NULL) {
*objectPtr = object;
return TCL_OK;
}
}
/*fprintf(stderr, "GetObjectFromObj convertFromAny for %s type %p %s\n", ObjStr(objPtr),
objPtr->typePtr, (objPtr->typePtr != NULL) ? objPtr->typePtr->name : "(none)");*/
/* In case, we have to revolve via the CallingNameSpace (i.e. the
* argument is not fully qualified), we retry here.
*/
string = ObjStr(objPtr);
if (isAbsolutePath(string)) {
object = NULL;
} else {
Tcl_Obj *tmpName = NameInNamespaceObj(string, CallingNameSpace(interp));
const char *nsString = ObjStr(tmpName);
INCR_REF_COUNT(tmpName);
object = GetObjectFromString(interp, nsString);
/* fprintf(stderr, " RETRY, string '%s' returned %p\n", nsString, object);*/
DECR_REF_COUNT(tmpName);
}
if (likely(object != NULL)) {
*objectPtr = object;
return TCL_OK;
}
return TCL_ERROR;
}
/*
*----------------------------------------------------------------------
* NsfCallObjectUnknownHandler --
*
* Call ::nsf::object::unknown; this function is typically called, when an unknown
* object or class is passed as an argument.
*
* Results:
* Tcl result code
*
* Side effects:
* Called handler might side effect.
*
*----------------------------------------------------------------------
*/
static int NsfCallObjectUnknownHandler(Tcl_Interp *interp, Tcl_Obj *nameObj) nonnull(1) nonnull(2);
static int
NsfCallObjectUnknownHandler(Tcl_Interp *interp, Tcl_Obj *nameObj) {
int result;
Tcl_Obj *ov[3];
assert(interp != NULL);
assert(nameObj != NULL);
/*fprintf(stderr, "try ::nsf::object::unknown for '%s'\n", ObjStr(nameObj));*/
ov[0] = NsfGlobalObjs[NSF_OBJECT_UNKNOWN_HANDLER];
ov[1] = nameObj;
INCR_REF_COUNT(ov[1]);
result = Tcl_EvalObjv(interp, 2, ov, 0);
DECR_REF_COUNT(ov[1]);
return result;
}
#if defined(NSF_EXPERIMENTAL)
static int NsfCallArgumentUnknownHandler(Tcl_Interp *interp,
Tcl_Obj *methodObj,
Tcl_Obj *argumentObj,
NsfObject *object) nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static int
NsfCallArgumentUnknownHandler(Tcl_Interp *interp,
Tcl_Obj *methodObj,
Tcl_Obj *argumentObj,
NsfObject *object) {
Tcl_Obj *ov[4];
int result, oc = 3;
assert(interp != NULL);
assert(methodObj != NULL);
assert(argumentObj != NULL);
assert(object != NULL);
/*fprintf(stderr, "try ::nsf::argument::unknown for '%s'\n", ObjStr(nameObj));*/
ov[0] = NsfGlobalObjs[NSF_ARGUMENT_UNKNOWN_HANDLER];
ov[1] = methodObj;
ov[2] = argumentObj;
if (object != NULL) {
ov[3] = object->cmdName;
oc ++;
}
INCR_REF_COUNT(ov[1]);
result = Tcl_EvalObjv(interp, oc, ov, 0);
DECR_REF_COUNT(ov[1]);
return result;
}
#endif
/*
*----------------------------------------------------------------------
* GetClassFromObj --
*
* Lookup an Next Scripting class from the given objPtr. If the class could
* not be directly converted and withUnknown is true, the function calls
* the unknown function (::nsf::object::unknown) to fetch the class on
* demand and retries the conversion. On success the NsfClass is returned
* in the third argument. The objPtr might be converted by this function.
*
* Results:
* True or false,
*
* Side effects:
* object type of objPtr might be changed
*
*----------------------------------------------------------------------
*/
static int
GetClassFromObj(Tcl_Interp *interp, register Tcl_Obj *objPtr,
NsfClass **clPtr, int withUnknown) {
NsfObject *object;
NsfClass *cls = NULL;
int result = TCL_OK;
const char *objName = ObjStr(objPtr);
Tcl_Command cmd;
assert(interp != NULL);
assert(objPtr != NULL);
assert(clPtr != NULL);
cmd = Tcl_GetCommandFromObj(interp, objPtr);
/*fprintf(stderr, "GetClassFromObj %p %s unknown %d cmd %p\n", objPtr, objName, withUnknown, cmd);*/
if (cmd != NULL) {
cls = NsfGetClassFromCmdPtr(cmd);
#if 1
if (cls == NULL) {
/*
* We have a cmd, but no class; namespace-imported classes are already
* resolved, but we have to care, if a class is "imported" via "interp
* alias".
*/
Tcl_Interp *alias_interp;
const char *alias_cmd_name;
Tcl_Obj *nameObj = objPtr;
Tcl_Obj **alias_ov;
int alias_oc = 0;
if (!isAbsolutePath(objName)) {
nameObj = NameInNamespaceObj(objName, CallingNameSpace(interp));
objName = ObjStr(nameObj);
INCR_REF_COUNT(nameObj);
}
result = Tcl_GetAliasObj(interp, objName,
&alias_interp, &alias_cmd_name, &alias_oc, &alias_ov);
Tcl_ResetResult(interp);
/* we only want interp-aliases with 0 args */
if (result == TCL_OK && alias_oc == 0) {
cmd = NSFindCommand(interp, alias_cmd_name);
/*fprintf(stderr, "..... alias arg 0 '%s' cmd %p\n", alias_cmd_name, cmd);*/
if (cmd != NULL) {
cls = NsfGetClassFromCmdPtr(cmd);
}
}
/*fprintf(stderr, "..... final cmd %p, cls %p\n", cmd , cls);*/
if (nameObj != objPtr) {
DECR_REF_COUNT(nameObj);
}
}
#endif
if (cls != NULL) {
*clPtr = cls;
return TCL_OK;
}
}
result = GetObjectFromObj(interp, objPtr, &object);
if (likely(result == TCL_OK)) {
cls = NsfObjectToClass(object);
if (cls != NULL) {
*clPtr = cls;
return TCL_OK;
} else {
/* flag, that we could not convert so far */
result = TCL_ERROR;
}
}
if (withUnknown != 0) {
result = NsfCallObjectUnknownHandler(interp, isAbsolutePath(objName) ? objPtr :
NameInNamespaceObj(objName, CallingNameSpace(interp)));
if (likely(result == TCL_OK)) {
/* Retry, but now, the last argument (withUnknown) has to be 0 */
result = GetClassFromObj(interp, objPtr, clPtr, 0);
}
/*fprintf(stderr, "... ::nsf::object::unknown for '%s',
result %d cl %p\n", objName, result, cl);*/
}
return result;
}
/*
* Version of GetClassFromObj() with external symbol
*/
int
NsfGetClassFromObj(Tcl_Interp *interp, Tcl_Obj *objPtr,
NsfClass **clPtr, int withUnknown) {
assert(interp != NULL);
assert(objPtr != NULL);
assert(clPtr != NULL);
return GetClassFromObj(interp, objPtr, clPtr, withUnknown);
}
/*
*----------------------------------------------------------------------
* IsObjectOfType --
*
* Check, if the provided NsfObject is of a certain type. The arguments
* "what" and "objPtr" are just used for the error messages. objPtr is the
* value from which the object was converted from.
*
* Results:
* Tcl result code.
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static int IsObjectOfType(Tcl_Interp *interp, NsfObject *object, const char *what, Tcl_Obj *objPtr,
Nsf_Param const *pPtr) nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(5);
static int
IsObjectOfType(Tcl_Interp *interp, NsfObject *object, const char *what, Tcl_Obj *objPtr,
Nsf_Param const *pPtr) {
NsfClass *cl;
Tcl_DString ds, *dsPtr = &ds;
assert(interp != NULL);
assert(object != NULL);
assert(what != NULL);
assert(objPtr != NULL);
assert(pPtr != NULL);
if (unlikely(pPtr->flags & NSF_ARG_BASECLASS) && !IsBaseClass(object)) {
what = "baseclass";
goto type_error;
}
if (unlikely(pPtr->flags & NSF_ARG_METACLASS) && !IsMetaClass(interp, (NsfClass *)object, 1)) {
what = "metaclass";
goto type_error;
}
if (likely(pPtr->converterArg == NULL)) {
return TCL_OK;
}
if ((GetClassFromObj(interp, pPtr->converterArg, &cl, 0) == TCL_OK)
&& IsSubType(object->cl, cl)) {
return TCL_OK;
}
type_error:
DSTRING_INIT(dsPtr);
Tcl_DStringAppend(dsPtr, what, -1);
if (pPtr->converterArg != NULL) {
Tcl_DStringAppend(dsPtr, " of type ", -1);
Tcl_DStringAppend(dsPtr, ObjStr(pPtr->converterArg), -1);
}
NsfObjErrType(interp, NULL, objPtr, Tcl_DStringValue(dsPtr), (Nsf_Param *)pPtr);
DSTRING_FREE(dsPtr);
return TCL_ERROR;
}
/*
*----------------------------------------------------------------------
* NameInNamespaceObj --
*
* Create a fully qualified name in the provided namespace or in
* the current namespace in form of an Tcl_Obj (with 0 refCount);
*
* Results:
* Tcl_Obj containing fully qualified name
*
* Side effects:
* Allocates fresh copies of list elements
*
*----------------------------------------------------------------------
*/
static Tcl_Obj *
NameInNamespaceObj(const char *name, Tcl_Namespace *nsPtr) {
Tcl_Obj *objPtr;
Tcl_DString ds, *dsPtr = &ds;
assert(name != NULL);
assert(nsPtr != NULL);
/*fprintf(stderr, "NameInNamespaceObj %s (%p, %s) ", name, nsPtr, nsPtr->fullName);*/
DSTRING_INIT(dsPtr);
DStringAppendQualName(dsPtr, nsPtr, name);
objPtr = Tcl_NewStringObj(Tcl_DStringValue(dsPtr), Tcl_DStringLength(dsPtr));
/*fprintf(stderr, "returns %s\n", ObjStr(objPtr));*/
DSTRING_FREE(dsPtr);
return objPtr;
}
/*
*----------------------------------------------------------------------
* NewTclCommand --
*
* Given a provided prefix in dsPtr, make it a name of a command that does not exist.
* This function is used by the *new command, when "anonymous" objects are created
*
* Results:
* dsPtr will be complete to represent a new (unused) name of a command
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
void NewTclCommand(Tcl_Interp *interp, Tcl_DString *dsPtr) nonnull(1) nonnull(2);
void
NewTclCommand(Tcl_Interp *interp, Tcl_DString *dsPtr) {
int prefixLength;
NsfStringIncrStruct *iss;
assert(interp != NULL);
assert(dsPtr != NULL);
prefixLength = dsPtr->length;
iss = &RUNTIME_STATE(interp)->iss;
while (1) {
(void)NsfStringIncr(iss);
Tcl_DStringAppend(dsPtr, iss->start, iss->length);
if (!Tcl_FindCommand(interp, Tcl_DStringValue(dsPtr), NULL, TCL_GLOBAL_ONLY)) {
break;
}
/*
* In case the symbol existed already, reset prefix to the
* original length.
*/
Tcl_DStringSetLength(dsPtr, prefixLength);
}
}
/*
*----------------------------------------------------------------------
* NsfReverseClasses --
*
* Reverse class list. Caller is responsible for freeing data.
*
* Results:
* Pointer to start of the reversed list
*
* Side effects:
* Allocates fresh copies of list elements
*
*----------------------------------------------------------------------
*/
static NsfClasses *NsfReverseClasses(NsfClasses *sl) nonnull(1) returns_nonnull;
static NsfClasses *
NsfReverseClasses(NsfClasses *sl) {
NsfClasses *firstPtr = NULL;
assert(sl != NULL);
for (; likely(sl != NULL); sl = sl->nextPtr) {
NsfClasses *element = NEW(NsfClasses);
element->cl = sl->cl;
element->clientData = sl->clientData;
element->nextPtr = firstPtr;
firstPtr = element;
}
return firstPtr;
}
/*
*----------------------------------------------------------------------
* NsfClassListFree --
*
* Frees all elements of the provided class list
*
* Results:
* None.
*
* Side effects:
* Frees memory.
*
*----------------------------------------------------------------------
*/
static void NsfClassListFree(NsfClasses *classList) nonnull(1);
static void
NsfClassListFree(NsfClasses *classList) {
NsfClasses *nextPtr;
assert(classList != NULL);
for (; likely(classList != NULL); classList = nextPtr) {
nextPtr = classList->nextPtr;
FREE(NsfClasses, classList);
}
}
/*
*----------------------------------------------------------------------
* NsfClassListAdd --
*
* Add class list entry to the specified list. In case the initial
* list is empty, *firstPtrPtr is updated as well.
*
* Results:
* Returns address of next-pointer.
*
* Side effects:
* New list element is allocated.
*
*----------------------------------------------------------------------
*/
static NsfClasses **
NsfClassListAdd(NsfClasses **firstPtrPtr, NsfClass *cl, ClientData clientData) {
NsfClasses *classListPtr, *element = NEW(NsfClasses);
assert(firstPtrPtr != NULL);
element->cl = cl;
element->clientData = clientData;
element->nextPtr = NULL;
classListPtr = *firstPtrPtr;
if (classListPtr != NULL) {
while (classListPtr->nextPtr) {
classListPtr = classListPtr->nextPtr;
}
classListPtr->nextPtr = element;
} else {
*firstPtrPtr = element;
}
return &(element->nextPtr);
}
/*
*----------------------------------------------------------------------
* NsfClassListAddNoDup --
*
* Add class list entry to the specified list without duplicates. In case
* the initial list is empty, *firstPtrPtr is updated as well.
*
* Results:
* Returns address of next pointer.
*
* Side effects:
* New list element is allocated.
*
*----------------------------------------------------------------------
*/
static NsfClasses **NsfClassListAddNoDup(NsfClasses **firstPtrPtr, NsfClass *cl,
ClientData clientData, int *isNewPtr)
nonnull(1) nonnull(2);
static NsfClasses **
NsfClassListAddNoDup(NsfClasses **firstPtrPtr, NsfClass *cl, ClientData clientData, int *isNewPtr) {
NsfClasses *clPtr, **nextPtr;
assert(firstPtrPtr != NULL);
assert(cl != NULL);
clPtr = *firstPtrPtr;
if (clPtr != NULL) {
for (; clPtr->nextPtr && clPtr->cl != cl; clPtr = clPtr->nextPtr);
nextPtr = &clPtr->nextPtr;
} else {
nextPtr = firstPtrPtr;
}
if (*nextPtr == NULL) {
NsfClasses *element = NEW(NsfClasses);
element->cl = cl;
element->clientData = clientData;
element->nextPtr = NULL;
*nextPtr = element;
if (isNewPtr != NULL) {
*isNewPtr = 1;
}
} else {
if (isNewPtr != NULL) {
*isNewPtr = 0;
}
}
return nextPtr;
}
/*
*----------------------------------------------------------------------
* NsfClassListFind --
*
* Find an element in the class list and return it if found.
*
* Results:
* Found element or NULL
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static NsfClasses *NsfClassListFind(NsfClasses *clPtr, NsfClass *cl) nonnull(2);
static NsfClasses *
NsfClassListFind(NsfClasses *clPtr, NsfClass *cl) {
assert(cl != NULL);
for (; clPtr; clPtr = clPtr->nextPtr) {
if (clPtr->cl == cl) break;
}
return clPtr;
}
#if defined(NSF_CLASSLIST_PRINT)
/* debugging purposes only */
/*
*----------------------------------------------------------------------
* NsfClassListStats --
*
* Print some statistics about generated Class List structures for
* debugging purpose.
*
* Results:
* None.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static void NsfClassListStats(const char *title, NsfClasses *classList) nonnull(1);
static void
NsfClassListStats(const char *title, NsfClasses *classListPtr) {
NsfClass *cl;
int count = 0;
assert(title != NULL);
cl = (classListPtr != NULL) ? classListPtr->cl : NULL;
for (; classListPtr; classListPtr = classListPtr->nextPtr) {
count++;
}
fprintf(stderr, "%s class list starting with %s has %d elements\n",
title, (cl != NULL) ? ClassName(cl) : "none", count);
}
static void NsfClassListPrint(const char *title, NsfClasses *clsList) nonnull(1);
static void
NsfClassListPrint(const char *title, NsfClasses *clsList) {
assert(title != NULL);
fprintf(stderr, "%s", title);
/* fprintf(stderr, " %p:", clsList); */
while (clsList) {
/* fprintf(stderr, " %p", clsList->cl); */
fprintf(stderr, " %p", clsList);
fprintf(stderr, " %s", ClassName(clsList->cl));
clsList = clsList->nextPtr;
}
fprintf(stderr, "\n");
}
#endif
/*
*----------------------------------------------------------------------
* NsfClassListUnlink --
*
* Return removed item with matching key form nsfClasses.
* Key is void to allow not only class pointers as keys.
*
* Results:
* unlinked element or NULL.
* In case the first element is unlinked, *firstPtrPtr
* is updated.
*
* Side effects:
* none.
*
*----------------------------------------------------------------------
*/
static NsfClasses *NsfClassListUnlink(NsfClasses **firstPtrPtr, void *key) nonnull(1) nonnull(2);
static NsfClasses *
NsfClassListUnlink(NsfClasses **firstPtrPtr, void *key) {
NsfClasses *entryPtr = NULL;
assert(firstPtrPtr != NULL);
assert(key != NULL);
if (*firstPtrPtr != NULL) {
NsfClasses *prevPtr = NULL;
/* list is non-empty */
for (entryPtr = *firstPtrPtr; entryPtr; prevPtr = entryPtr, entryPtr = entryPtr->nextPtr) {
if ((void *)entryPtr->cl == key) {
/* found entry */
if (prevPtr != NULL) {
/* later item */
prevPtr->nextPtr = entryPtr->nextPtr;
} else {
/* first item */
*firstPtrPtr = entryPtr->nextPtr;
}
entryPtr->nextPtr = NULL;
break;
}
}
}
return entryPtr;
}
/*
* Functions for computing Precedence Order
*/
/*
*----------------------------------------------------------------------
* TopoSort --
*
* Perform a topological sort of the class hierarchies. Depending on the
* argument "direction" it performs the sort on the transitive list of
* superclasses or subclasses. The resulting list contains no duplicates or
* cycles and is returned in the class member "order". During the
* computation it colors the processed nodes in WHITE, GRAY or BLACK.
*
* Results:
* Boolean value indicating success.
*
* Side effects:
* Allocating class list.
*
*----------------------------------------------------------------------
*/
enum colors { WHITE, GRAY, BLACK };
typedef enum { SUPER_CLASSES, SUB_CLASSES } ClassDirection;
static int TopoSort(NsfClass *cl, NsfClass *baseClass, ClassDirection direction, int withMixinOfs)
nonnull(1) nonnull(2);
static int
TopoSort(NsfClass *cl, NsfClass *baseClass, ClassDirection direction, int withMixinOfs) {
NsfClasses *sl, *pl;
assert(cl != NULL);
assert(baseClass != NULL);
sl = direction == SUPER_CLASSES ? cl->super : cl->sub;
/*
* Be careful to reset the color of unreported classes to
* white in case we unwind with error, and on final exit
* reset color of reported classes to WHITE. Meaning of colors:
*
* WHITE ... not processed
* GRAY ... in work
* BLACK ... done
*/
cl->color = GRAY;
for (; sl; sl = sl->nextPtr) {
NsfClass *sc = sl->cl;
if (sc->color == GRAY) { cl->color = WHITE; return 0; }
if (unlikely(sc->color == WHITE && !TopoSort(sc, baseClass, direction, withMixinOfs))) {
cl->color = WHITE;
if (cl == baseClass) {
register NsfClasses *pc;
for (pc = cl->order; pc; pc = pc->nextPtr) { pc->cl->color = WHITE; }
}
return 0;
}
}
if (withMixinOfs != 0) {
NsfCmdList *classMixins = cl->opt && cl->opt->isClassMixinOf ? cl->opt->isClassMixinOf : NULL;
for (; classMixins; classMixins = classMixins->nextPtr) {
NsfClass *sc = NsfGetClassFromCmdPtr(classMixins->cmdPtr);
if (unlikely(sc->color == WHITE && !TopoSort(sc, baseClass, direction, withMixinOfs))) {
NsfLog(sc->object.teardown, NSF_LOG_WARN,
"cycle in the mixin graph list detected for class %s",
ClassName(sc));
}
}
}
cl->color = BLACK;
pl = NEW(NsfClasses);
pl->cl = cl;
pl->nextPtr = baseClass->order;
baseClass->order = pl;
if (unlikely(cl == baseClass)) {
register NsfClasses *pc;
for (pc = cl->order; pc; pc = pc->nextPtr) { pc->cl->color = WHITE; }
}
return 1;
}
/*
*----------------------------------------------------------------------
* MustBeBefore --
*
* Check the partial ordering of classes based on precedence list in the
* form of prior ordering from the topological sort. We compare here
* orderings based the class hierarchies with single inheritance and prior
* solved multiple inheritance orderings. The test is true, if b must be
* before a.
*
* Results:
* Boolean value indicating success.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int MustBeBefore(NsfClass *a, NsfClass *b, NsfClasses *superClasses) nonnull(1) nonnull(2) nonnull(3);
static int
MustBeBefore(NsfClass *a, NsfClass *b, NsfClasses *superClasses) {
int result;
assert(a != NULL);
assert(b != NULL);
assert(superClasses != NULL);
assert(b->order != NULL);
/*
* Check, if a is in the precedence order of b. E.g.
*
* a c1 object
* b c2 a object
*
* If so then b must be before a to preserve the precedence order based on
* single inheritance (monotonicity).
*/
result = (NsfClassListFind(b->order, a) != NULL);
/*
* When the partital ordering can't be decided based on the local order
* test, we take the specified multiple inheritance ordering in superClasses
* (e.g. coming from -superclass {x y}) which is not taken account by the
* class hierarchy.
*/
if (result == 0) {
NsfClasses *sl;
int bFound = 0;
#if defined(NSF_LINEARIZER_TRACE)
fprintf(stderr, "--> check %s before %s?\n", ClassName(b), ClassName(a));
NsfClassListPrint("miList", miList);
#endif
for (sl = superClasses; sl; sl = sl->nextPtr) {
if (sl->cl == b) {
bFound = 1;
} else if (bFound && sl->cl == a) {
#if defined(NSF_LINEARIZER_TRACE)
fprintf(stderr, "%s in inheritanceList before %s therefore a < b\n", ClassName(b), ClassName(a));
#endif
result = 1;
break;
}
}
}
#if defined(NSF_LINEARIZER_TRACE)
fprintf(stderr, "compare a: %s %p b: %s %p -> %d\n", ClassName(a), a->order, ClassName(b),b->order, result);
NsfClassListPrint("\ta", a->order);
NsfClassListPrint("\tb", b->order);
#endif
return result;
}
/*
*----------------------------------------------------------------------
* ValidClassListTail --
*
* Debug function to assure that the provided class lists are valid. The
* tail of the class list must be a base class of the current object
* system.
*
* Results:
* None.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
#if !defined(NDEBUG)
static void ValidClassListTail(const char *what, NsfClasses *classListPtr) {
NsfClasses *sl, *tail;
for (sl = classListPtr, tail = NULL; sl; sl = sl->nextPtr) {tail = sl;}
if (tail != NULL) {
/* fprintf(stderr, "check tail what %s %p\n", what, ClassName(tail->cl), tail->nextPtr);*/
assert(IsBaseClass(&tail->cl->object));
assert(tail->nextPtr == NULL);
}
}
#else
# define ValidClassListTail(what, classListPtr)
#endif
/*
*----------------------------------------------------------------------
* MergeInheritanceLists --
*
* Merge the PrecedenceOrders of class cl. This function is called, when cl
* is defined with multiple inheritance. The precedence orders of the
* specified classes are merged in an order preserving manner to achieve
* monotonicity.
*
* Results:
* precedence order.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static NsfClasses *MergeInheritanceLists(NsfClasses *pl, NsfClass *cl) nonnull(1) nonnull(2) returns_nonnull;
static NsfClasses *
MergeInheritanceLists(NsfClasses *pl, NsfClass *cl) {
NsfClasses *sl, *baseList, **plNext, *superClasses,
*deletionList = NULL;
assert(pl != NULL);
assert(cl != NULL);
#if defined(NSF_LINEARIZER_TRACE)
fprintf(stderr, "=== working on %s\n", ClassName(cl));
#endif
/*
* The available multiple inheritance list is in reversed order so we have
* to reverse it to obtain the specified superClasses in the provided order.
*/
superClasses = NsfReverseClasses(cl->super);
/*
* We distinguish between a
*
* - baseList (which might be later an result of partial merges), and a
* - mergeList, which is merged order-preserving into the baseList.
*
* The first baseList is the precedence list of the first element of the
* specified superClasses.
*/
baseList = superClasses->cl->order;
assert(baseList != NULL);
#if defined(NSF_LINEARIZER_TRACE)
fprintf(stderr, "=== baseList from %s\n", ClassName(superClasses->cl));
NsfClassListPrint("baseList", baseList);
#endif
/*
* The first element of the result list of the merge operation is the first
* element of the baseList.
*/
plNext = NsfClassListAdd(&pl, baseList->cl, NULL);
/*
* For every element but the first (which is already in baseList), we have to
* perform the merge operation. For n elements in superClasses, the merge
* operation is performed n-1 times.
*/
for (sl = superClasses->nextPtr; sl; sl = sl->nextPtr) {
NsfClasses *mergeList = sl->cl->order, *baseListCurrent;
#if defined(NSF_LINEARIZER_TRACE)
NsfClassListPrint("mergeList", mergeList);
#endif
/*
* Merge mergeList into baseList. We start with the 2nd (later probably
* nth) entry of the baseList
*/
baseListCurrent = baseList->nextPtr;
assert(baseListCurrent != NULL);
while (mergeList != NULL) {
NsfClass *addClass;
ValidClassListTail("baseList", baseList);
ValidClassListTail("mergeList", mergeList);
assert(baseListCurrent != NULL);
/* NsfClassListPrint("baseListCurrent", baseListCurrent); */
if (mergeList->cl == baseListCurrent->cl) {
/*
* The first element of mergeList and the current baseList element are
* identical. The element is in the result, keep the element in the
* result, advance in both lists.
*/
/* fprintf(stderr, "\t\tadvance both\n"); */
addClass = mergeList->cl;
baseListCurrent = baseListCurrent->nextPtr;
mergeList = mergeList->nextPtr;
} else if (MustBeBefore(baseListCurrent->cl, mergeList->cl, superClasses)) {
/*
* Check, if current element of mergeList must be before the current
* element of baseList. If so, insert current mergelist element before
* baseListCurrent,
*/
addClass = mergeList->cl;
mergeList = mergeList->nextPtr;
/* fprintf(stderr, "\t\tadd from mergeList %s\n", ClassName(addClass)); */
} else {
/*
* Two cases above do not apply, add from baseList and advance
* baseList pointer.
*/
addClass = baseListCurrent->cl;
baseListCurrent = baseListCurrent->nextPtr;
/* fprintf(stderr, "\t\tadd from baselist %s\n", ClassName(addClass)); */
}
if (addClass != NULL) {
/*
* We have to add an element to the precedence list. When the class to
* be added is already in the result list (which might happen just in
* crippled cases) then delete it. In the final step it will be added
* again to the end.
*/
NsfClasses *deletedElement = NsfClassListUnlink(&pl, addClass);
if (deletedElement != NULL) {
#if defined(NSF_LINEARIZER_TRACE)
fprintf(stderr, "\t\t%s is redundant (in resultList)\n", ClassName(addClass));
#endif
/*
* When plNext points to the nextPtr of the deleted element, search
* the list from the begin
*/
if (plNext == &(deletedElement->nextPtr)) {
plNext = &pl;
}
NsfClassListFree(deletedElement);
}
/* add the new element */
plNext = NsfClassListAdd(plNext, addClass, NULL);
}
#if defined(NSF_LINEARIZER_TRACE)
NsfClassListPrint("pl:", pl);
#endif
}
/*
* mergeList is processed, we have a final precedence list in pl. In case
* are at then of superClasses, we are done. Otherwise, use the resulting
* pl as next baseList and continue with the next mergeList from
* superClasses.
*/
#if defined(NSF_LINEARIZER_TRACE)
NsfClassListPrint("plFinal:", pl);
#endif
if (sl->nextPtr != NULL) {
/* We are not at the end, use pl as new base list */
baseList = pl;
#if defined(NSF_LINEARIZER_TRACE)
fprintf(stderr, "=== setting new baseList\n");
NsfClassListPrint("new baseList", baseList);
#endif
/*
* Add old pl to deletion list; these entries are deleted once merging
* is finished.
*/
NsfClassListAdd(&deletionList, NULL, pl);
/*
* Create a fresh pl for the next iteration.
*/
pl = NULL;
plNext = NsfClassListAdd(&pl, cl, NULL);
}
}
for (sl = deletionList; sl; sl = sl->nextPtr) {
/* fprintf(stderr, "delete from deletion list %p client data %p\n", sl, sl->clientData); */
NsfClassListFree(sl->clientData);
}
if (deletionList != NULL) NsfClassListFree(deletionList);
NsfClassListFree(superClasses);
return pl;
}
#if defined(NDEBUG)
#define AssertOrderIsWhite(arg)
#else
static void AssertOrderIsWhite(NsfClasses *order) {
register NsfClasses *pc;
for (pc = order; pc; pc = pc->nextPtr) { assert(pc->cl->color == WHITE); }
}
#endif
/*
*----------------------------------------------------------------------
* TopoSortSuper --
*
* Compute the precedence order for baseClass based on the superclasses. If
* the order is computable, update base class and return 1. Otherwise
* return 0.
*
* Results:
* Success/Failure.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int TopoSortSuper(NsfClass *cl, NsfClass *baseClass) nonnull(1) nonnull(2);
static int
TopoSortSuper(NsfClass *cl, NsfClass *baseClass) {
NsfClasses *pl, *sl;
assert(cl != NULL);
assert(baseClass != NULL);
/*
* Be careful to reset the color of unreported classes to
* white in the caller on all exits to WHITE.
*
* WHITE ... not processed
* GRAY ... in work
* BLACK ... done
*/
cl->color = GRAY;
for (sl = cl->super; likely(sl != NULL); sl = sl->nextPtr) {
NsfClass *sc = sl->cl;
if (sc->color == GRAY) { cl->color = WHITE; return 0; }
if (unlikely(sc->color == WHITE && !TopoSortSuper(sc, baseClass))) {
cl->color = WHITE;
return 0;
}
}
/*
* Create a new precedence list containing cl.
*/
pl = NEW(NsfClasses);
pl->cl = cl;
pl->nextPtr = NULL;
/*
* If we have multiple inheritance we merge the precomputed inheritance
* orders of the involved classes in the provided order.
*/
if (likely(cl->super != NULL) && unlikely(cl->super->nextPtr != NULL)) {
pl = MergeInheritanceLists(pl, cl);
if (baseClass->order != NULL) {
NsfClassListFree(baseClass->order);
baseClass->order = NULL;
}
} else {
/*
* Add baseClass order to the end of the precedence list.
*/
assert(pl->nextPtr == NULL);
pl->nextPtr = baseClass->order;
}
cl->color = BLACK;
/*
* Set baseclass order to the newly computed list (the result of this function)
*/
baseClass->order = pl;
return 1;
}
/*
*----------------------------------------------------------------------
* PrecedenceOrder --
*
* Return a class list containing the transitive list of super classes
* starting with (and containing) the provided class. The super class list
* is cached in cl->order and has to be invalidated by FlushPrecedences()
* in case the order changes. The caller does not have to free the returned
* class list (like for TransitiveSubClasses);
*
* Results:
* Class list, NULL on error
*
* Side effects:
* Updating cl->order.
*
*----------------------------------------------------------------------
*/
NSF_INLINE static NsfClasses *PrecedenceOrder(NsfClass *cl) nonnull(1);
NSF_INLINE static NsfClasses *
PrecedenceOrder(NsfClass *cl) {
register NsfClasses *sl;
int success;
assert(cl != NULL);
/*
* Check, of the superclass order is already cached.
*/
if (likely(cl->order != NULL)) {
return cl->order;
}
/*
* For multiple inheritance (more than one superclass), make sure that
* required precedence orders are precomputed.
*/
if (likely(cl->super != NULL) && unlikely(cl->super->nextPtr != NULL)) {
for (sl = cl->super; sl; sl = sl->nextPtr) {
NsfClasses *pl;
#if defined(NSF_LINEARIZER_TRACE)
fprintf(stderr, "====== PrecedenceOrder mi, check %s %p \n",
ClassName(sl->cl), sl->cl->order);
#endif
if (unlikely(sl->cl->order == NULL) && likely(cl != sl->cl)) {
#if defined(NSF_LINEARIZER_TRACE)
fprintf(stderr, "====== PrecedenceOrder computes required order for %s \n",
ClassName(sl->cl));
#endif
PrecedenceOrder(sl->cl);
#if defined(NSF_LINEARIZER_TRACE)
NsfClassListPrint("====== PO:", sl->cl->order);
#endif
}
for (pl = sl->cl->order; pl; pl = pl->nextPtr) {
#if defined(NSF_LINEARIZER_TRACE)
fprintf(stderr, "====== PO order: %s %p\n", ClassName(pl->cl), pl->cl->order);
#endif
if (pl->cl->order == NULL) {
#if defined(NSF_LINEARIZER_TRACE)
fprintf(stderr, "========== recurse\n");
#endif
PrecedenceOrder(pl->cl);
}
}
}
}
success = TopoSortSuper(cl, cl);
/*
* Reset the color of all nodes.
*/
for (sl = cl->order; sl; sl = sl->nextPtr) {
sl->cl->color = WHITE;
}
/*
* If computation is successful, return cl->order.
* Otherwise clear cl->order.
*/
if (likely(success)) {
AssertOrderIsWhite(cl->order);
return cl->order;
} else {
NsfClassListFree(cl->order);
return cl->order = NULL;
}
}
/*
*----------------------------------------------------------------------
* TransitiveSubClasses --
*
* Return a class list containing the transitive list of sub-classes
* starting with (and containing) the provided class.The caller has to free
* the returned class list.
*
* Results:
* Class list or NULL if cycles are detected
*
* Side effects:
* Just indirect.
*
*----------------------------------------------------------------------
*/
NSF_INLINE static NsfClasses * TransitiveSubClasses(NsfClass *cl) nonnull(1);
NSF_INLINE static NsfClasses *
TransitiveSubClasses(NsfClass *cl) {
NsfClasses *order, *savedOrder;
assert(cl != NULL);
/*
* Since TopoSort() places its result in cl->order, we have to save the old
* cl->order, perform the computation and restore the old order.
*/
savedOrder = cl->order;
cl->order = NULL;
if (likely(TopoSort(cl, cl, SUB_CLASSES, 0))) {
order = cl->order;
} else {
if (cl->order != NULL) {
NsfClassListFree(cl->order);
}
order = NULL;
}
/*
* TODO: if this holds, we can change the fn to returns_nonnull and the else-branch is not needed
*/
assert(order != NULL);
AssertOrderIsWhite(order);
cl->order = savedOrder;
return order;
}
/*
*----------------------------------------------------------------------
* DependentSubClasses --
*
* Return a class list containing all dependent classes (i.e. classes that
* inherit via intrinsic or mixin hierarchy) starting with (and containing)
* the provided class.The caller has to free the returned class list.
*
* Results:
* Class list or NULL if cycles are detected
*
* Side effects:
* Just indirect.
*
*----------------------------------------------------------------------
*/
NSF_INLINE static NsfClasses *DependentSubClasses(NsfClass *cl) nonnull(1);
NSF_INLINE static NsfClasses *
DependentSubClasses(NsfClass *cl) {
NsfClasses *order, *savedOrder;
assert(cl != NULL);
/*
* Since TopoSort() places its result in cl->order, we have to save the old
* cl->order, perform the computation and restore the old order.
*/
savedOrder = cl->order;
cl->order = NULL;
if (likely(TopoSort(cl, cl, SUB_CLASSES, 1))) {
order = cl->order;
} else {
if (cl->order != NULL) NsfClassListFree(cl->order);
order = NULL;
}
/*
* TODO: if this holds, we can change the fn to returns_nonnull and the else-branch is not needed
*/
assert(order != NULL);
AssertOrderIsWhite(order);
cl->order = savedOrder;
return order;
}
/*
*----------------------------------------------------------------------
* FlushPrecedences --
*
* This function iterations over the provided class list and flushes (and
* frees) the superclass caches in cl->order for every element.
*
* Results:
* None.
*
* Side effects:
* Freeing class lists cached in cl->order.
*
*----------------------------------------------------------------------
*/
static void FlushPrecedences(NsfClasses *subClasses) nonnull(1);
static void
FlushPrecedences(NsfClasses *clPtr) {
assert(clPtr != NULL);
do {
if (clPtr->cl->order != NULL) {
NsfClassListFree(clPtr->cl->order);
}
clPtr->cl->order = NULL;
clPtr = clPtr->nextPtr;
} while (clPtr != NULL);
}
/*
*----------------------------------------------------------------------
* AddInstance --
*
* Add an instance to a class.
*
* Results:
* None.
*
* Side effects:
* Add entry to children hash-table.
*
*----------------------------------------------------------------------
*/
static void AddInstance(NsfObject *object, NsfClass *cl) nonnull(1) nonnull(2);
static void
AddInstance(NsfObject *object, NsfClass *cl) {
int isNewItem;
assert(object != NULL);
assert(cl != NULL);
object->cl = cl;
(void) Tcl_CreateHashEntry(&cl->instances, (char *)object, &isNewItem);
/*if (newItem == 0) {
fprintf(stderr, "instance %p %s was already an instance of %p %s\n", object, ObjectName(object), cl, ClassName(cl));
}*/
assert(isNewItem != 0);
}
/*
*----------------------------------------------------------------------
* RemoveInstance --
*
* Remove an instance from a class. The function checks, whether the entry
* is actually still an instance before it deletes it.
*
* Results:
* void
*
* Side effects:
* Entry deleted from instances hash-table
*
*----------------------------------------------------------------------
*/
static void RemoveInstance(NsfObject *object, NsfClass *cl) nonnull(1) nonnull(2);
static void
RemoveInstance(NsfObject *object, NsfClass *cl) {
assert(object != NULL);
assert(cl != NULL);
/*
* If we are during a delete, which should not happen under normal
* operations, prevent an abort due to a deleted hash table.
*/
if (cl->object.flags & NSF_DURING_DELETE) {
NsfLog(cl->object.teardown, NSF_LOG_WARN,
"Class which should loose instance is currently being deleted: %s",
ClassName(cl));
} else {
Tcl_HashEntry *hPtr = Tcl_CreateHashEntry(&cl->instances, (char *)object, NULL);
/*if (hPtr == NULL) {
fprintf(stderr, "instance %s is not an instance of %s\n", ObjectName(object), ClassName(cl));
}*/
assert(hPtr != NULL);
Tcl_DeleteHashEntry(hPtr);
}
}
/*
* superclass/subclass list maintenance
*/
static void AddSuper1(NsfClass *s, NsfClasses **sl) nonnull(1) nonnull(2);
static void AddSuper(NsfClass *cl, NsfClass *super) nonnull(1);
static int RemoveSuper1(NsfClass *s, NsfClasses **sl) nonnull(1) nonnull(2);
static int RemoveSuper(NsfClass *cl, NsfClass *super) nonnull(1) nonnull(2);
static void
AddSuper1(NsfClass *s, NsfClasses **sl) {
NsfClasses *sc = NEW(NsfClasses);
assert(s != NULL);
assert(sl != NULL);
sc->cl = s;
sc->nextPtr = *sl;
*sl = sc;
}
static void
AddSuper(NsfClass *cl, NsfClass *super) {
if (super != NULL) {
assert(cl != NULL);
/*
* keep corresponding sub in step with super
*/
AddSuper1(super, &cl->super);
AddSuper1(cl, &super->sub);
}
}
static int
RemoveSuper1(NsfClass *s, NsfClasses **sl) {
NsfClasses *l;
assert(s != NULL);
assert(sl != NULL);
l = *sl;
if (l == NULL) return 0;
if (l->cl == s) {
*sl = l->nextPtr;
FREE(NsfClasses, l);
return 1;
}
while (l->nextPtr && l->nextPtr->cl != s) l = l->nextPtr;
if (l->nextPtr != NULL) {
NsfClasses *n = l->nextPtr->nextPtr;
FREE(NsfClasses, l->nextPtr);
l->nextPtr = n;
return 1;
}
return 0;
}
static int
RemoveSuper(NsfClass *cl, NsfClass *super) {
int sp, sb;
assert(cl != NULL);
assert(super != NULL);
/*
* keep corresponding sub in step with super
*/
sp = RemoveSuper1(super, &cl->super);
sb = RemoveSuper1(cl, &super->sub);
return sp && sb;
}
/*
* methods lookup
*/
/*
*----------------------------------------------------------------------
* GetEnsembleObjectFromName --
*
* Get an ensemble object from a method name. If the method name
* is fully qualified, just use a Tcl lookup, otherwise get it from
* the provided namespace,
*
* Results:
* ensemble object or NULL
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static NsfObject * GetEnsembleObjectFromName(Tcl_Interp *interp, Tcl_Namespace *nsPtr, Tcl_Obj *name,
Tcl_Command *cmdPtr, int *fromClassNS)
nonnull(1) nonnull(3) nonnull(4) nonnull(5);
static NsfObject *
GetEnsembleObjectFromName(Tcl_Interp *interp, Tcl_Namespace *nsPtr, Tcl_Obj *name,
Tcl_Command *cmdPtr, int *fromClassNS) {
Tcl_Command cmd;
const char *nameString = ObjStr(name);
assert(interp != NULL);
assert(name != NULL);
assert(cmdPtr != NULL);
assert(fromClassNS != NULL);
if (*nameString == ':') {
cmd = Tcl_GetCommandFromObj(interp, name);
*fromClassNS = IsClassNsName(nameString, NULL);
} else {
cmd = (nsPtr != NULL) ? FindMethod(nsPtr, nameString) : NULL;
}
if (cmd != NULL) {
*cmdPtr = cmd;
return NsfGetObjectFromCmdPtr(GetOriginalCommand(cmd));
}
return NULL;
}
/*
*----------------------------------------------------------------------
* GetRegObject --
*
* Try to get the object, on which the method was registered from a
* fully qualified method handle
*
* Results:
* NsfObject * or NULL on failure
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static NsfObject *GetRegObject(Tcl_Interp *interp, Tcl_Command cmd, const char *methodName,
const char **methodName1, int *fromClassNS)
nonnull(1) nonnull(3) nonnull(5) nonnull(2);
static NsfObject *
GetRegObject(Tcl_Interp *interp, Tcl_Command cmd, const char *methodName,
const char **methodName1, int *fromClassNS) {
NsfObject *regObject;
const char *procName;
size_t objNameLength;
assert(interp != NULL);
assert(cmd != NULL);
assert(methodName != NULL);
assert(*methodName == ':');
assert(fromClassNS != NULL);
assert(cmd != NULL);
procName = Tcl_GetCommandName(interp, cmd);
objNameLength = strlen(methodName) - strlen(procName) - 2;
if (objNameLength > 0) {
Tcl_DString ds, *dsPtr = &ds;
/* obtain parent name */
Tcl_DStringInit(dsPtr);
Tcl_DStringAppend(dsPtr, methodName, objNameLength);
regObject = GetObjectFromNsName(interp, Tcl_DStringValue(dsPtr), fromClassNS);
if (regObject && methodName1) {
*methodName1 = procName;
}
Tcl_DStringFree(dsPtr);
} else {
regObject = NULL;
}
/*fprintf(stderr, "GetRegObject cmd %p methodName '%s' => %p\n", cmd, methodName, regObject);*/
return regObject;
}
/*
*----------------------------------------------------------------------
* ResolveMethodName --
*
* Resolve a method name relative to a provided namespace.
* The method name can be
* a) a fully qualified name
* b) a list of method name and subcommands
* c) a simple name
*
* Results:
* Tcl_Command or NULL on failure
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static Tcl_Command ResolveMethodName(Tcl_Interp *interp, Tcl_Namespace *nsPtr, Tcl_Obj *methodObj,
Tcl_DString *methodNameDs,
NsfObject **regObject,
NsfObject **defObject,
const char **methodName1, int *fromClassNS) nonnull(1) nonnull(3) nonnull(8);
static Tcl_Command
ResolveMethodName(Tcl_Interp *interp, Tcl_Namespace *nsPtr, Tcl_Obj *methodObj,
Tcl_DString *methodNameDs,
NsfObject **regObject,
NsfObject **defObject,
const char **methodName1, int *fromClassNS) {
const char *methodName;
NsfObject *referencedObject;
int containsSpace, tailContainsSpace;
Tcl_Command cmd;
assert(interp != NULL);
assert(methodObj != NULL);
assert(fromClassNS != NULL);
methodName = ObjStr(methodObj);
/*fprintf(stderr,"methodName '%s' comp %d type %s\n",
methodName, strchr(methodName, ' ')>0, (methodObj->typePtr != NULL) ? methodObj->typePtr->name : "(none)");*/
if (methodObj->typePtr == Nsf_OT_listType) {
int length;
Tcl_ListObjLength(interp, methodObj, &length);
containsSpace = length > 1;
} else if (methodObj->typePtr == Nsf_OT_tclCmdNameType) {
containsSpace = 0;
} else {
containsSpace = strchr(methodName, ' ') != NULL;
}
if (containsSpace != 0) {
tailContainsSpace = strchr(NSTail(methodName), ' ') != NULL;
} else {
tailContainsSpace = 0;
}
/*fprintf(stderr, "<%s> containsSpace %d tailContainsSpace %d\n", methodName, containsSpace, tailContainsSpace);*/
#if !defined(NDEBUG)
if (containsSpace != 0) {
assert(strchr(methodName, ' ') != 0);
} else {
assert(tailContainsSpace == 0);
}
#endif
if (tailContainsSpace != 0) {
const char *firstElementString;
Tcl_Namespace *parentNsPtr;
NsfObject *ensembleObject;
Tcl_Obj *methodHandleObj, **ov;
int oc, i;
/*
* When the methodName is required, we have to provide a methodNameDS as
* well.
*/
assert(methodName1 == NULL || methodNameDs != NULL);
/*fprintf(stderr, "name '%s' contains space \n", methodName);*/
if ((Tcl_ListObjGetElements(interp, methodObj, &oc, &ov) != TCL_OK)
|| ((referencedObject = GetEnsembleObjectFromName(interp, nsPtr, ov[0],
&cmd, fromClassNS)) == NULL)
) {
if (methodName1 != NULL) {*methodName1 = NULL;}
if (regObject != NULL) {*regObject = NULL;}
if (defObject != NULL) {*defObject = NULL;}
return NULL;
}
/*
* We have an ensemble object. First, figure out, on which
* object/class the ensemble object was registered. We determine
* the regObject on the first element of the list. If we can't,
* then the current object is the regObject.
*/
firstElementString = ObjStr(ov[0]);
if (*firstElementString == ':') {
NsfObject *registrationObject;
registrationObject = GetRegObject(interp, cmd, firstElementString, methodName1, fromClassNS);
if (regObject != NULL) {*regObject = registrationObject;}
} else {
if (regObject != NULL) {*regObject = NULL;}
}
/*fprintf(stderr, "... regObject object '%s' reg %p, fromClassNS %d\n",
ObjectName(referencedObject), *regObject, *fromClassNS);*/
/*
* Build a fresh methodHandleObj to held method name and names of
* subcmds.
*/
methodHandleObj = Tcl_DuplicateObj(referencedObject->cmdName);
INCR_REF_COUNT(methodHandleObj);
if (methodNameDs != NULL) {
Tcl_DStringAppend(methodNameDs, Tcl_GetCommandName(interp, cmd), -1);
}
parentNsPtr = NULL;
/*
* Iterate over the objects and append to the methodNameDs and methodHandleObj
*/
for (i = 1; i < oc; i++) {
cmd = Tcl_GetCommandFromObj(interp, methodHandleObj);
ensembleObject = (cmd != NULL) ? NsfGetObjectFromCmdPtr(cmd) : NULL;
if (ensembleObject == NULL) {
DECR_REF_COUNT(methodHandleObj);
if (methodName1 != NULL) {*methodName1 = NULL;}
if (regObject != NULL) {*regObject = NULL;}
if (defObject != NULL) {*defObject = NULL;}
return NULL;
}
if (parentNsPtr && Tcl_Command_nsPtr(ensembleObject->id) != parentNsPtr) {
/* fprintf(stderr, "*** parent change saved parent %p %s computed parent %p %s\n",
parentNsPtr, parentNsPtr->fullName,
Tcl_Command_nsPtr(ensembleObject->id),
Tcl_Command_nsPtr(ensembleObject->id)->fullName);*/
DECR_REF_COUNT(methodHandleObj);
methodHandleObj = Tcl_DuplicateObj(ensembleObject->cmdName);
}
parentNsPtr = ensembleObject->nsPtr;
Tcl_AppendLimitedToObj(methodHandleObj, "::", 2, INT_MAX, NULL);
Tcl_AppendLimitedToObj(methodHandleObj, ObjStr(ov[i]), -1, INT_MAX, NULL);
if (methodNameDs != NULL) {
Tcl_DStringAppendElement(methodNameDs, ObjStr(ov[i]));
}
}
/*
* cmd contains now the parent-obj, on which the method was
* defined. Get from this cmd the defObj.
*/
if (defObject != NULL) {*defObject = NsfGetObjectFromCmdPtr(cmd);}
/*fprintf(stderr, "... handle '%s' last cmd %p defObject %p\n",
ObjStr(methodHandleObj), cmd, *defObject);*/
/*
* Obtain the command from the method handle and report back the
* final methodName,
*/
cmd = Tcl_GetCommandFromObj(interp, methodHandleObj);
if (methodNameDs != NULL && methodName1 != NULL) {
*methodName1 = Tcl_DStringValue(methodNameDs);
}
/*fprintf(stderr, "... methodname1 '%s' cmd %p\n", Tcl_DStringValue(methodNameDs), cmd);*/
DECR_REF_COUNT(methodHandleObj);
} else if (*methodName == ':') {
cmd = Tcl_GetCommandFromObj(interp, methodObj);
if (likely(cmd != NULL)) {
referencedObject = GetRegObject(interp, cmd, methodName, methodName1, fromClassNS);
if (regObject != NULL) {*regObject = referencedObject;}
if (defObject != NULL) {*defObject = referencedObject;}
if (methodName1 && *methodName1 == NULL) {
/*
* The return value for the method name is required and was not
* computed by GetRegObject()
*/
*methodName1 = Tcl_GetCommandName(interp, cmd);
}
} else {
/*
* The cmd was not registered on an object or class, but we
* still report back the cmd (might be e.g. a primitive cmd).
*/
if (regObject != NULL) {*regObject = NULL;}
if (defObject != NULL) {*defObject = NULL;}
}
} else {
if (methodName1 != NULL) {*methodName1 = methodName;}
cmd = (nsPtr != NULL) ? FindMethod(nsPtr, methodName) : NULL;
if (regObject != NULL) {*regObject = NULL;}
if (defObject != NULL) {*defObject = NULL;}
}
return cmd;
}
/*
*----------------------------------------------------------------------
* CmdIsProc --
*
* Check, whether the cmd is interpreted
*
* Results:
* Boolean
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
NSF_INLINE static int CmdIsProc(Tcl_Command cmd) nonnull(1);
NSF_INLINE static int
CmdIsProc(Tcl_Command cmd) {
/* In 8.6: TclIsProc((Command *)cmd) is not equivalent to the definition below */
assert(cmd != NULL);
return (Tcl_Command_objProc(cmd) == TclObjInterpProc);
}
/*
*----------------------------------------------------------------------
* CmdIsNsfObject --
*
* Check whether the provided cmd refers to an NsfObject or Class.
*
* Results:
* Boolean
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
NSF_INLINE static int CmdIsNsfObject(Tcl_Command cmd) nonnull(1);
NSF_INLINE static int
CmdIsNsfObject(Tcl_Command cmd) {
assert(cmd != NULL);
return Tcl_Command_objProc(cmd) == NsfObjDispatch;
}
/*
*----------------------------------------------------------------------
* GetTclProcFromCommand --
*
* Check if cmd refers to a Tcl proc, and if so, return the proc
* definition.
*
* Results:
* The found proc of cmd or NULL.
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static Proc *GetTclProcFromCommand(Tcl_Command cmd) nonnull(1);
static Proc *
GetTclProcFromCommand(Tcl_Command cmd) {
Tcl_ObjCmdProc *proc;
assert(cmd != NULL);
proc = Tcl_Command_objProc(cmd);
if (proc == TclObjInterpProc) {
return (Proc *)Tcl_Command_objClientData(cmd);
}
return NULL;
}
/*
*----------------------------------------------------------------------
* FindMethod --
*
* Lookup the cmd for methodName in a namespace.
*
* Results:
* The found cmd of the method or NULL.
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
NSF_INLINE static Tcl_Command
FindMethod(Tcl_Namespace *nsPtr, const char *methodName) {
register Tcl_HashEntry *entryPtr;
assert(nsPtr != NULL);
assert(methodName != NULL);
if ((entryPtr = Tcl_CreateHashEntry(Tcl_Namespace_cmdTablePtr(nsPtr), methodName, NULL))) {
return (Tcl_Command) Tcl_GetHashValue(entryPtr);
}
return NULL;
}
/*
*----------------------------------------------------------------------
* FindProcMethod --
*
* Lookup the proc for methodName in a namespace.
*
* Results:
* The found proc of the method or NULL.
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static Proc * FindProcMethod(Tcl_Namespace *nsPtr, const char *methodName) nonnull(1) nonnull(2);
static Proc *
FindProcMethod(Tcl_Namespace *nsPtr, const char *methodName) {
Tcl_Command cmd;
assert(nsPtr != NULL);
assert(methodName != NULL);
cmd = FindMethod(nsPtr, methodName);
return (cmd != NULL) ? GetTclProcFromCommand(cmd) : NULL;
}
/*
*----------------------------------------------------------------------
* SearchPLMethod, SearchPLMethod0 --
*
* Search a method along a provided class list. The methodName must be
* simple (must not contain space). While SearchPLMethod() allows to
* specify a flag for filtering the command, SearchPLMethod0() is a lightly
* optimized function without the filtering option.
*
* Results:
* The found class defining the method or NULL.
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static NsfClass * SearchPLMethod(register NsfClasses *pl, const char *methodName, Tcl_Command *cmdPtr, unsigned int flags)
nonnull(1) nonnull(2) nonnull(3);
static NsfClass * SearchPLMethod0(register NsfClasses *pl, const char *methodName, Tcl_Command *cmdPtr)
nonnull(1) nonnull(2) nonnull(3);
static NsfClass *
SearchPLMethod0(register NsfClasses *pl, const char *methodName, Tcl_Command *cmdPtr) {
assert(pl != NULL);
assert(methodName != NULL);
assert(cmdPtr != NULL);
/* Search the precedence list (class hierarchy) */
do {
register Tcl_HashEntry *entryPtr =
Tcl_CreateHashEntry(Tcl_Namespace_cmdTablePtr(pl->cl->nsPtr), methodName, NULL);
if (entryPtr != NULL) {
*cmdPtr = (Tcl_Command) Tcl_GetHashValue(entryPtr);
return pl->cl;
}
pl = pl->nextPtr;
} while (pl != NULL);
return NULL;
}
static NsfClass *
SearchPLMethod(register NsfClasses *pl, const char *methodName,
Tcl_Command *cmdPtr, unsigned int flags) {
assert(pl != NULL);
assert(methodName != NULL);
assert(cmdPtr != NULL);
/* Search the precedence list (class hierarchy) */
do {
register Tcl_HashEntry *entryPtr =
Tcl_CreateHashEntry(Tcl_Namespace_cmdTablePtr(pl->cl->nsPtr), methodName, NULL);
if (entryPtr != NULL) {
Tcl_Command cmd = (Tcl_Command) Tcl_GetHashValue(entryPtr);
if (likely((Tcl_Command_flags(cmd) & flags) == 0u)) {
*cmdPtr = cmd;
return pl->cl;
}
}
pl = pl->nextPtr;
} while (pl != NULL);
return NULL;
}
/*
*----------------------------------------------------------------------
* SearchCMethod --
*
* Search a method along the superclass hierarchy of the provided
* class. The methodObj must be simple (must not contain
* space). The method has the interface for internal calls during
* interpretation, while SearchSimpleCMethod() has the interface
* with more overhead for introspection.
*
* Results:
* The found class defining the method or NULL.
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static NsfClass * SearchCMethod(/*@notnull@*/ NsfClass *cl, const char *methodName, Tcl_Command *cmdPtr)
nonnull(1) nonnull(2) nonnull(3);
static NsfClass *
SearchCMethod(/*@notnull@*/ NsfClass *cl, const char *methodName, Tcl_Command *cmdPtr) {
assert(methodName != NULL);
assert(cmdPtr != NULL);
assert(cl != NULL);
return SearchPLMethod0(PrecedenceOrder(cl), methodName, cmdPtr);
}
/*
*----------------------------------------------------------------------
* SearchSimpleCMethod --
*
* Search a method along the superclass hierarchy of the provided
* class. The methodObj must be simple (must not contain
* space). The method has the same interface as
* SearchComplexCMethod().
*
* Results:
* The found class defining the method or NULL.
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static NsfClass * SearchSimpleCMethod(Tcl_Interp *interp, /*@notnull@*/ NsfClass *cl,
Tcl_Obj *methodObj, Tcl_Command *cmdPtr) nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static NsfClass *
SearchSimpleCMethod(Tcl_Interp *interp, /*@notnull@*/ NsfClass *cl,
Tcl_Obj *methodObj, Tcl_Command *cmdPtr) {
assert(interp != NULL);
assert(cl != NULL);
assert(methodObj != NULL);
assert(cmdPtr != NULL);
return SearchPLMethod0(PrecedenceOrder(cl), ObjStr(methodObj), cmdPtr);
}
/*
*----------------------------------------------------------------------
* SearchComplexCMethod --
*
* Search a method along the superclass hierarchy of the provided
* class. The methodObj can refer to an ensemble object (can
* contain space). The method has the same interface as
* SearchSimpleCMethod().
*
* Results:
* The found class defining the method or NULL.
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static NsfClass * SearchComplexCMethod(Tcl_Interp *interp, /*@notnull@*/ NsfClass *cl,
Tcl_Obj *methodObj, Tcl_Command *cmdPtr) nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static NsfClass *
SearchComplexCMethod(Tcl_Interp *interp, /*@notnull@*/ NsfClass *cl,
Tcl_Obj *methodObj, Tcl_Command *cmdPtr) {
NsfClasses *pl;
int fromClassNS = 1;
assert(interp != NULL);
assert(cl != NULL);
assert(methodObj != NULL);
assert(cmdPtr != NULL);
for (pl = PrecedenceOrder(cl); pl; pl = pl->nextPtr) {
Tcl_Command cmd = ResolveMethodName(interp, pl->cl->nsPtr, methodObj,
NULL, NULL, NULL, NULL, &fromClassNS);
if (cmd != NULL) {
*cmdPtr = cmd;
return pl->cl;
}
}
return NULL;
}
/*
*----------------------------------------------------------------------
* ObjectFindMethod --
*
* Find a method for a given object in the precedence path. The
* provided methodObj might be an ensemble object. This function
* tries to optimize access by calling different implementations
* for simple and ensemble method names.
*
* Results:
* Tcl command.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static Tcl_Command ObjectFindMethod(Tcl_Interp *interp, NsfObject *object, Tcl_Obj *methodObj, NsfClass **pcl)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static Tcl_Command
ObjectFindMethod(Tcl_Interp *interp, NsfObject *object, Tcl_Obj *methodObj, NsfClass **pcl) {
Tcl_Command cmd = NULL;
NsfClass *(*lookupFunction)(Tcl_Interp *interp, NsfClass *cl,
Tcl_Obj *methodObj, Tcl_Command *cmdPtr);
assert(interp != NULL);
assert(object != NULL);
assert(methodObj != NULL);
assert(pcl != NULL);
if (strchr(ObjStr(methodObj), ' ') != NULL) {
lookupFunction = SearchComplexCMethod;
} else {
lookupFunction = SearchSimpleCMethod;
}
if (unlikely(object->flags & NSF_MIXIN_ORDER_VALID) == 0) {
MixinComputeDefined(interp, object);
}
if (object->flags & NSF_MIXIN_ORDER_DEFINED_AND_VALID) {
NsfCmdList *mixinList;
for (mixinList = object->mixinOrder; mixinList; mixinList = mixinList->nextPtr) {
NsfClass *mixin = NsfGetClassFromCmdPtr(mixinList->cmdPtr);
if (mixin && (*pcl = (*lookupFunction)(interp, mixin, methodObj, &cmd))) {
if (Tcl_Command_flags(cmd) & NSF_CMD_CLASS_ONLY_METHOD && !NsfObjectIsClass(object)) {
cmd = NULL;
continue;
}
break;
}
}
}
if (cmd == NULL && object->nsPtr) {
int fromClassNS = 0;
cmd = ResolveMethodName(interp, object->nsPtr, methodObj,
NULL, NULL, NULL, NULL, &fromClassNS);
}
if (cmd == NULL && object->cl) {
*pcl = (*lookupFunction)(interp, object->cl, methodObj, &cmd);
}
return cmd;
}
/*
*----------------------------------------------------------------------
* GetObjectSystem --
*
* Return the object system for which the object was defined
*
* Results:
* Object system pointer
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static NsfObjectSystem * GetObjectSystem(NsfObject *object) nonnull(1);
static NsfObjectSystem *
GetObjectSystem(NsfObject *object) {
assert(object != NULL);
if (NsfObjectIsClass(object)) {
return ((NsfClass *)object)->osPtr;
}
assert(object->cl);
return object->cl->osPtr;
}
/*
*----------------------------------------------------------------------
* ObjectSystemFree --
*
* Free a single object system structure including its root classes.
*
* Results:
* None.
*
* Side effects:
* Free memory of structure, free the root classes.
*
*----------------------------------------------------------------------
*/
static void ObjectSystemFree(Tcl_Interp *interp, NsfObjectSystem *osPtr) nonnull(1) nonnull(2);
static void
ObjectSystemFree(Tcl_Interp *interp, NsfObjectSystem *osPtr) {
int idx;
assert(interp != NULL);
assert(osPtr != NULL);
for (idx = 0; idx <= NSF_s_set_idx; idx++) {
if (osPtr->methods[idx]) { DECR_REF_COUNT(osPtr->methods[idx]); }
if (osPtr->handles[idx]) { DECR_REF_COUNT(osPtr->handles[idx]); }
}
if (osPtr->rootMetaClass && osPtr->rootClass) {
RemoveSuper(osPtr->rootMetaClass, osPtr->rootClass);
RemoveInstance((NsfObject *)osPtr->rootMetaClass, osPtr->rootMetaClass);
RemoveInstance((NsfObject *)osPtr->rootClass, osPtr->rootMetaClass);
FinalObjectDeletion(interp, &osPtr->rootClass->object);
FinalObjectDeletion(interp, &osPtr->rootMetaClass->object);
}
FREE(NsfObjectSystem, osPtr);
}
/*
*----------------------------------------------------------------------
* ObjectSystemAdd --
*
* Add and entry to the list of object systems of the interpreter.
*
* Results:
* None.
*
* Side effects:
* Updating the per interp list of object systems.
*
*----------------------------------------------------------------------
*/
static void ObjectSystemAdd(Tcl_Interp *interp, NsfObjectSystem *osPtr) nonnull(1) nonnull(2);
static void
ObjectSystemAdd(Tcl_Interp *interp, NsfObjectSystem *osPtr) {
assert(interp != NULL);
assert(osPtr != NULL);
osPtr->nextPtr = RUNTIME_STATE(interp)->objectSystems;
RUNTIME_STATE(interp)->objectSystems = osPtr;
}
/*
*----------------------------------------------------------------------
* ObjectSystemsCleanup --
*
* Delete all objects from all defined object systems. This method
* is to be called when an Next Scripting process or thread exists.
*
* Results:
* None.
*
* Side effects:
* All commands and objects are deleted, memory is freed.
*
*----------------------------------------------------------------------
*/
static int ObjectSystemsCleanup(Tcl_Interp *interp, int withKeepvars) nonnull(1);
static int
ObjectSystemsCleanup(Tcl_Interp *interp, int withKeepvars) {
NsfCmdList *instances = NULL, *entryPtr;
NsfObjectSystem *osPtr, *nPtr;
assert(interp != NULL);
/* Deletion is performed in two rounds:
* (a) SOFT DESTROY: invoke all user-defined destroy methods
* without destroying objects
* (b) PHYSICAL DESTROY: delete the objects and classes,
* destroy methods are not invoked anymore
*
* This is to prevent that the destroy order causes classes to be
* deleted before the methods invoked by destroy are executed. Note
* that it is necessary to iterate over all object systems
* simultaneous, since the might be dependencies between objects of
* different object systems.
*/
/*
* Collect all instances from all object systems
*/
for (osPtr = RUNTIME_STATE(interp)->objectSystems; osPtr; osPtr = osPtr->nextPtr) {
GetAllInstances(interp, &instances, osPtr->rootClass);
}
/***** SOFT DESTROY *****/
RUNTIME_STATE(interp)->exitHandlerDestroyRound = NSF_EXITHANDLER_ON_SOFT_DESTROY;
/*fprintf(stderr, "===CALL destroy on OBJECTS\n");*/
for (entryPtr = instances; entryPtr; entryPtr = entryPtr->nextPtr) {
NsfObject *object = (NsfObject *)entryPtr->clorobj;
/*fprintf(stderr, "key = %s %p %d flags %.6x\n",
ObjectName(object), object, object && !NsfObjectIsClass(object), object->flags);*/
if (object && !NsfObjectIsClass(object)
&& !(object->flags & NSF_DESTROY_CALLED)) {
DispatchDestroyMethod(interp, object, 0);
}
}
/*fprintf(stderr, "===CALL destroy on CLASSES\n");*/
for (entryPtr = instances; entryPtr; entryPtr = entryPtr->nextPtr) {
NsfClass *cl = entryPtr->clorobj;
if (cl && !(cl->object.flags & NSF_DESTROY_CALLED)) {
DispatchDestroyMethod(interp, (NsfObject *)cl, 0);
}
}
/* now, turn of filters, all destroy callbacks are done */
RUNTIME_STATE(interp)->doFilters = 0;
#ifdef DO_CLEANUP
FreeAllNsfObjectsAndClasses(interp, &instances);
# ifdef DO_FULL_CLEANUP
DeleteProcsAndVars(interp, Tcl_GetGlobalNamespace(interp), withKeepvars);
# endif
#endif
/* now free all objects systems with their root classes */
for (osPtr = RUNTIME_STATE(interp)->objectSystems; osPtr; osPtr = nPtr) {
nPtr = osPtr->nextPtr;
ObjectSystemFree(interp, osPtr);
}
#ifdef DO_CLEANUP
/* finally, free all nsfprocs */
DeleteNsfProcs(interp, NULL);
#endif
CmdListFree(&instances, NULL);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* CallDirectly --
*
* Determine when it is possible/necessary to call a method
* implementation directly or via method dispatch.
*
* Results:
* 1 is returned when command should be invoked directly, 0
* otherwise.
*
* Side effects:
* methodObjPtr is set with the Tcl_Obj of the name of the method,
* if there is one defined.
*
*----------------------------------------------------------------------
*/
static int CallDirectly(Tcl_Interp *interp, NsfObject *object, int methodIdx, Tcl_Obj **methodObjPtr)
nonnull(1) nonnull(2) nonnull(4);
static int
CallDirectly(Tcl_Interp *interp, NsfObject *object, int methodIdx, Tcl_Obj **methodObjPtr) {
/*
* We can/must call a C-implemented method directly, when
*
* a) the object system has no such appropriate method defined
*
* b) the script does not contain a method with the appropriate
* name, and
*
* c) filters are not active on the object
*/
NsfObjectSystem *osPtr = GetObjectSystem(object);
int callDirectly = 1;
Tcl_Obj *methodObj;
assert(interp != NULL);
assert(object != NULL);
assert(methodObjPtr != NULL);
methodObj = osPtr->methods[methodIdx];
/*fprintf(stderr, "OS of %s is %s, method %s methodObj %p osPtr %p defined %.8x %.8x overloaded %.8x %.8x flags %.8x\n",
ObjectName(object), ObjectName(&osPtr->rootClass->object),
Nsf_SystemMethodOpts[methodIdx]+1, methodObj,
osPtr,
osPtr->definedMethods, osPtr->definedMethods & (1 << methodIdx),
osPtr->overloadedMethods, osPtr->overloadedMethods & (1 << methodIdx),
1 << methodIdx );*/
if (methodObj != NULL) {
unsigned int flag = 1 << methodIdx;
if ((osPtr->overloadedMethods & flag) != 0) {
/* overloaded, we must dispatch */
/*fprintf(stderr, "overloaded\n");*/
callDirectly = 0;
} else if ((osPtr->definedMethods & flag) == 0) {
/* not defined, we must call directly */
/*fprintf(stderr, "Warning: CallDirectly object %s idx %s not defined\n",
ObjectName(object), Nsf_SystemMethodOpts[methodIdx]+1);*/
} else {
#if DISPATCH_ALWAYS_DEFINED_METHODS
callDirectly = 0;
#else
if (!(object->flags & NSF_FILTER_ORDER_VALID)) {
FilterComputeDefined(interp, object);
}
/*fprintf(stderr, "CallDirectly object %s idx %s object flags %.6x %.6x \n",
ObjectName(object), Nsf_SystemMethodOpts[methodIdx]+1,
(object->flags & NSF_FILTER_ORDER_DEFINED_AND_VALID),
NSF_FILTER_ORDER_DEFINED_AND_VALID);*/
if ((object->flags & NSF_FILTER_ORDER_DEFINED_AND_VALID) == NSF_FILTER_ORDER_DEFINED_AND_VALID) {
/*fprintf(stderr, "CallDirectly object %s idx %s has filter \n",
ObjectName(object), Nsf_SystemMethodOpts[methodIdx]+1);*/
callDirectly = 0;
}
#endif
}
}
/*fprintf(stderr, "CallDirectly object %s idx %d returns %s => %d\n",
ObjectName(object), methodIdx, (methodObj != NULL) ? ObjStr(methodObj) : "(null)", callDirectly);*/
/* return the methodObj in every case */
*methodObjPtr = methodObj;
return callDirectly;
}
/*
*----------------------------------------------------------------------
* NsfMethodObj --
*
* Return the methodObj for a given method index.
*
* Results:
* Returns Tcl_Obj* or NULL
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
Tcl_Obj * NsfMethodObj(NsfObject *object, int methodIdx) nonnull(1);
Tcl_Obj *
NsfMethodObj(NsfObject *object, int methodIdx) {
NsfObjectSystem *osPtr = GetObjectSystem(object);
assert(object != NULL);
/*
fprintf(stderr, "NsfMethodObj object %s os %p idx %d %s methodObj %p\n",
ObjectName(object), osPtr, methodIdx,
Nsf_SystemMethodOpts[methodIdx]+1,
osPtr->methods[methodIdx]);
*/
return osPtr->methods[methodIdx];
}
/*
* conditional memory allocations of optional storage
*/
static NsfObjectOpt *
NsfRequireObjectOpt(NsfObject *object) {
assert(object != NULL);
if (object->opt == NULL) {
object->opt = NEW(NsfObjectOpt);
memset(object->opt, 0, sizeof(NsfObjectOpt));
}
return object->opt;
}
NsfClassOpt *
NsfRequireClassOpt(/*@notnull@*/ NsfClass *cl) {
assert(cl != NULL);
if (cl->opt == NULL) {
cl->opt = NEW(NsfClassOpt);
memset(cl->opt, 0, sizeof(NsfClassOpt));
if (cl->object.flags & NSF_IS_CLASS) {
cl->opt->id = cl->object.id; /* probably a temporary solution */
}
}
return cl->opt;
}
static void MakeObjNamespace(Tcl_Interp *interp, NsfObject *object) nonnull(1) nonnull(2);
static void
MakeObjNamespace(Tcl_Interp *interp, NsfObject *object) {
assert(interp != NULL);
assert(object != NULL);
#ifdef NAMESPACE_TRACE
fprintf(stderr, "+++ MakeObjNamespace for %s\n", ObjectName(object));
#endif
if (object->nsPtr == NULL) {
Tcl_Namespace *nsPtr;
nsPtr = object->nsPtr = NSGetFreshNamespace(interp, object,
ObjectName(object));
assert(nsPtr != NULL);
/*
* Copy all obj variables to the newly created namespace
*/
if (object->varTablePtr != NULL) {
Tcl_HashSearch search;
Tcl_HashEntry *hPtr;
TclVarHashTable *varTablePtr = Tcl_Namespace_varTablePtr(nsPtr);
Tcl_HashTable *varHashTablePtr = TclVarHashTablePtr(varTablePtr);
Tcl_HashTable *objHashTablePtr = TclVarHashTablePtr(object->varTablePtr);
*varHashTablePtr = *objHashTablePtr; /* copy the table */
if (objHashTablePtr->buckets == objHashTablePtr->staticBuckets) {
varHashTablePtr->buckets = varHashTablePtr->staticBuckets;
}
for (hPtr = Tcl_FirstHashEntry(varHashTablePtr, &search); hPtr;
hPtr = Tcl_NextHashEntry(&search)) {
hPtr->tablePtr = varHashTablePtr;
}
CallStackReplaceVarTableReferences(interp, object->varTablePtr,
(TclVarHashTable *)varHashTablePtr);
ckfree((char *) object->varTablePtr);
object->varTablePtr = NULL;
}
}
}
static Tcl_Var CompiledLocalsLookup(CallFrame *varFramePtr, const char *varName) nonnull(1) nonnull(2);
static Tcl_Var
CompiledLocalsLookup(CallFrame *varFramePtr, const char *varName) {
int i, localCt;
Tcl_Obj **objPtrPtr;
assert(varFramePtr != NULL);
assert(varName != NULL);
localCt = varFramePtr->numCompiledLocals;
objPtrPtr = &varFramePtr->localCachePtr->varName0;
/* fprintf(stderr, ".. search #local vars %d for %s\n", localCt, varName);*/
for (i = 0 ; i < localCt ; i++, objPtrPtr++) {
Tcl_Obj *objPtr = *objPtrPtr;
if (likely(objPtr != NULL)) {
const char *localName = TclGetString(objPtr);
if (unlikely(varName[0] == localName[0]
&& varName[1] == localName[1]
&& strcmp(varName, localName) == 0)) {
return (Tcl_Var) &varFramePtr->compiledLocals[i];
}
}
}
return NULL;
}
/*
*----------------------------------------------------------------------
* GetVarAndNameFromHash --
*
* Conveniance function to obtain variable and name from
* a variable hash entry
*
* Results:
* Results are passed back in argument 2 and 3
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static void GetVarAndNameFromHash(Tcl_HashEntry *hPtr, Var **val, Tcl_Obj **varNameObj)
nonnull(1) nonnull(2) nonnull(3);
static void
GetVarAndNameFromHash(Tcl_HashEntry *hPtr, Var **val, Tcl_Obj **varNameObj) {
assert(hPtr != NULL);
assert(val != NULL);
assert(varNameObj != NULL);
*val = TclVarHashGetValue(hPtr);
*varNameObj = TclVarHashGetKey(*val);
}
/*********************************************************
*
* Variable resolvers
*
*********************************************************/
#define FOR_COLON_RESOLVER(ptr) (*(ptr) == ':' && *((ptr)+1) != ':')
/*
*----------------------------------------------------------------------
* MethodName --
*
* Return the methodName from a Tcl_Obj, strips potentially the
* colon prefix
*
* Results:
* method name
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static const char *MethodName(Tcl_Obj *methodObj) nonnull(1) returns_nonnull;
static const char *
MethodName(Tcl_Obj *methodObj) {
const char *methodName;
assert(methodObj != NULL);
methodName = ObjStr(methodObj);
if (FOR_COLON_RESOLVER(methodName)) {
methodName ++;
}
return methodName;
}
const char *
NsfMethodName(Tcl_Obj *methodObj) {
assert(methodObj != NULL);
return MethodName(methodObj);
}
/*
*----------------------------------------------------------------------
* NsfMethodNamePath --
*
* Compute the full method name for error messages containing the
* ensemble root.
*
* Results:
* Tcl_Obj, caller has to take care for ref-counting
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
Tcl_Obj *
NsfMethodNamePath(Tcl_Interp *interp,
Tcl_CallFrame *framePtr,
const char *methodName) {
Tcl_Obj *resultObj = Tcl_NewListObj(0, NULL);
assert(interp != NULL);
assert(methodName != NULL);
if (framePtr != NULL) {
Tcl_ListObjAppendList(interp, resultObj,
CallStackMethodPath(interp, framePtr));
}
Tcl_ListObjAppendElement(interp, resultObj,
Tcl_NewStringObj(methodName,-1));
return resultObj;
}
/*
*----------------------------------------------------------------------
* NsColonVarResolver --
*
* Namespace resolver for namespace specific variable lookup.
* colon prefix
*
* Results:
* method name
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int NsColonVarResolver(Tcl_Interp *interp, const char *varName, Tcl_Namespace *UNUSED(nsPtr),
int flags, Tcl_Var *varPtr)
nonnull(1) nonnull(2) nonnull(5);
static int
NsColonVarResolver(Tcl_Interp *interp, const char *varName, Tcl_Namespace *UNUSED(nsPtr),
int flags, Tcl_Var *varPtr) {
Tcl_CallFrame *varFramePtr;
TclVarHashTable *varTablePtr;
NsfObject *object;
int new, frameFlags;
Tcl_Obj *key;
assert(interp != NULL);
assert(varName != NULL);
assert(varPtr != NULL);
#if defined (VAR_RESOLVER_TRACE)
fprintf(stderr, "NsColonVarResolver '%s' flags %.6x\n", varName, flags);
#endif
/*
* Case 1: The variable is to be resolved in global scope, proceed in
* resolver chain
*/
if (unlikely(flags & TCL_GLOBAL_ONLY)) {
/*fprintf(stderr, "global-scoped lookup for var '%s' in NS '%s'\n", varName,
nsPtr->fullName);*/
return TCL_CONTINUE;
}
/*
* Case 2: The lookup happens in a proc frame (lookup in compiled
* locals and hash-table vars). We are not interested to handle
* these cases here, so proceed in resolver chain.
*/
varFramePtr = (Tcl_CallFrame *)Tcl_Interp_varFramePtr(interp);
assert(varFramePtr != NULL);
frameFlags = Tcl_CallFrame_isProcCallFrame(varFramePtr);
#if defined (VAR_RESOLVER_TRACE)
fprintf(stderr, "NsColonVarResolver '%s' frame flags %.6x\n", varName,
Tcl_CallFrame_isProcCallFrame(varFramePtr));
#endif
if (frameFlags & FRAME_IS_PROC) {
#if defined (VAR_RESOLVER_TRACE)
fprintf(stderr, "...... forwarding to next resolver\n");
#endif
/*fprintf(stderr, "proc-scoped var '%s' assumed, frame %p flags %.6x\n",
name, varFramePtr, Tcl_CallFrame_isProcCallFrame(varFramePtr));*/
return TCL_CONTINUE;
}
/*
* FRAME_IS_NSF_CMETHOD has always FRAME_IS_PROC set, so it is
* handled already above
*/
assert((frameFlags & FRAME_IS_NSF_CMETHOD) == 0);
if ((frameFlags & FRAME_IS_NSF_OBJECT) == 0) {
/*
* Case 3: we are not in an Next Scripting frame, so proceed as well
*/
return TCL_CONTINUE;
} else {
/*
* Case 4: we are in an Next Scripting object frame
*/
if (*varName == ':') {
if (*(varName+1) != ':') {
/*
* Case 4a: The variable name starts with a single ":". Skip
* the char, but stay in the resolver.
*/
varName ++;
} else {
/*
* Case 4b: Names starting with "::" are not for us
*/
return TCL_CONTINUE;
}
} else if (NSTail(varName) != varName) {
/*
* Case 4c: Names containing "::" are not for us
*/
return TCL_CONTINUE;
}
/*
* Since we know that we are here always in an object frame, we
* can blindly get the object from the client data .
*/
object = (NsfObject *)Tcl_CallFrame_clientData(varFramePtr);
}
/*
* We have an object and create the variable if not found
*/
assert(object != NULL);
varTablePtr = (object->nsPtr != NULL) ? Tcl_Namespace_varTablePtr(object->nsPtr) : object->varTablePtr;
assert(varTablePtr != NULL);
/*
* Does the variable exist in the object's namespace?
*/
key = Tcl_NewStringObj(varName, -1);
INCR_REF_COUNT(key);
*varPtr = (Tcl_Var)VarHashCreateVar(varTablePtr, key, NULL);
#if defined (VAR_RESOLVER_TRACE)
fprintf(stderr, "...... lookup of '%s' for object '%s' returns %p\n",
varName, ObjectName(object), *varPtr);
#endif
if (*varPtr == NULL) {
/*
* We failed to find the variable so far, therefore we create it
* in this var table. Note that in several cases above,
* TCL_CONTINUE takes care for variable creation.
*/
Var *newVar = VarHashCreateVar(varTablePtr, key, &new);
*varPtr = (Tcl_Var)newVar;
}
DECR_REF_COUNT(key);
return *varPtr ? TCL_OK : TCL_ERROR;
}
/*********************************************************
*
* Begin of compiled var resolver
*
*********************************************************/
typedef struct NsfResolvedVarInfo {
Tcl_ResolvedVarInfo vInfo; /* This must be the first element. */
NsfObject *lastObject;
Tcl_Var var;
Tcl_Obj *nameObj;
} NsfResolvedVarInfo;
/*
*----------------------------------------------------------------------
* HashVarFree --
*
* Free hashed variables based on refCount.
*
* Results:
* None.
*
* Side effects:
* Changed refCount or freed variable.
*
*----------------------------------------------------------------------
*/
NSF_INLINE static void
HashVarFree(Tcl_Var var) {
if (unlikely(VarHashRefCount(var) < 2)) {
/*fprintf(stderr,"#### free %p\n", var);*/
ckfree((char *) var);
} else {
VarHashRefCount(var)--;
}
}
/*
*----------------------------------------------------------------------
* CompiledColonVarFetch --
*
* This function is the actual variable resolution handler for a
* colon-prefixed (":/varName/") found in a compiled script
* registered by the compiling var resolver (see
* InterpCompiledColonResolver()). When initializing a call frame,
* this handler is called, crawls the object's var table (creating
* a variable, if needed), and returns a Var structure. Based on
* this, a link variable ":/varName/" pointing to this object
* variable (i.e., "varName") is created and is stored in the
* compiled locals array of the call frame. Beware that these link
* variables interact with the family of link-creating commands
* ([variable], [global], [upvar]) by being subject to
* "retargeting" upon name conflicts (see
* tests/varresolutiontest.tcl for some examples).
*
* Results:
* Tcl_Var containing value or NULL.
*
* Side effects:
* Updates of Variable structure cache in necessary.
*
*----------------------------------------------------------------------
*/
static Tcl_Var CompiledColonVarFetch(Tcl_Interp *interp, Tcl_ResolvedVarInfo *vinfoPtr) nonnull(1) nonnull(2);
static Tcl_Var
CompiledColonVarFetch(Tcl_Interp *interp, Tcl_ResolvedVarInfo *vinfoPtr) {
NsfResolvedVarInfo *resVarInfo;
NsfCallStackContent *cscPtr;
NsfObject *object;
TclVarHashTable *varTablePtr;
Tcl_Var var;
int new;
assert(interp != NULL);
assert(vinfoPtr != NULL);
resVarInfo = (NsfResolvedVarInfo *)vinfoPtr;
var = resVarInfo->var;
#if defined(VAR_RESOLVER_TRACE)
unsigned int flags = (var != NULL) ? ((Var *)var)->flags : 0;
fprintf(stderr,"CompiledColonVarFetch var '%s' var %p flags = %.4x dead? %.4x\n",
ObjStr(resVarInfo->nameObj), var, flags, flags & VAR_DEAD_HASH);
#endif
cscPtr = CallStackGetTopFrame0(interp);
if (likely(cscPtr != NULL)) {
object = cscPtr->self;
} else {
object = NULL;
}
/*
* We cache lookups based on nsf objects; we have to care about
* cases, where the instance variables are in some delete states.
*
*/
if ((var && object == resVarInfo->lastObject &&
(((((Var *)var)->flags) & VAR_DEAD_HASH)) == 0)) {
/*
* The variable is valid.
*/
#if defined(VAR_RESOLVER_TRACE)
fprintf(stderr, ".... cached var '%s' var %p flags = %.4x\n",
ObjStr(resVarInfo->nameObj), var, ((Var *)var)->flags);
#endif
return var;
}
if (unlikely(object == NULL)) {
return NULL;
}
if (var != NULL) {
/*
* The variable is not valid anymore. Clean it up.
*/
HashVarFree(var);
}
if (object->nsPtr != NULL) {
varTablePtr = Tcl_Namespace_varTablePtr(object->nsPtr);
} else if (object->varTablePtr != NULL) {
varTablePtr = object->varTablePtr;
} else {
/*
* In most situations, we have a varTablePtr through the clauses
* above. However, if someone redefines e.g. the method "configure" or
* "objectparameter", we might find an object with an still empty
* varTable, since these are lazy initiated.
*/
varTablePtr = object->varTablePtr = VarHashTableCreate();
}
assert(varTablePtr != NULL);
resVarInfo->lastObject = object;
#if defined(VAR_RESOLVER_TRACE)
fprintf(stderr,"Fetch var %s in object %s\n", TclGetString(resVarInfo->nameObj), ObjectName(object));
#endif
resVarInfo->var = var = (Tcl_Var) VarHashCreateVar(varTablePtr, resVarInfo->nameObj, &new);
/*
* Increment the reference counter to avoid ckfree() of the variable
* in Tcl's FreeVarEntry(); for cleanup, we provide our own
* HashVarFree();
*/
VarHashRefCount(var)++;
#if defined(VAR_RESOLVER_TRACE)
{
Var *v = (Var *)(resVarInfo->var);
fprintf(stderr, ".... looked up existing var %s var %p flags = %.6x undefined %d\n",
ObjStr(resVarInfo->nameObj),
v, v->flags,
TclIsVarUndefined(v));
}
#endif
return var;
}
/*
*----------------------------------------------------------------------
* CompiledColonVarFree --
*
* DeleteProc of the compiled variable handler.
*
* Results:
* None.
*
* Side effects:
* Free compiled variable structure and variable.
*
*----------------------------------------------------------------------
*/
static void CompiledColonVarFree(Tcl_ResolvedVarInfo *vInfoPtr) nonnull(1);
static void
CompiledColonVarFree(Tcl_ResolvedVarInfo *vInfoPtr) {
NsfResolvedVarInfo *resVarInfo;
assert(vInfoPtr != NULL);
resVarInfo = (NsfResolvedVarInfo *)vInfoPtr;
#if defined(VAR_RESOLVER_TRACE)
fprintf(stderr, "CompiledColonVarFree %p for variable '%s'\n",
resVarInfo, ObjStr(resVarInfo->nameObj));
#endif
DECR_REF_COUNT(resVarInfo->nameObj);
if (resVarInfo->var != NULL) {HashVarFree(resVarInfo->var);}
FREE(NsfResolvedVarInfo, vInfoPtr);
}
/*
*----------------------------------------------------------------------
* InterpCompiledColonVarResolver --
*
* For colon-prefixed (":/varName/") variables, we provide our own
* var resolver for compiling scripts and evaluating compiled
* scripts (e.g., proc bodies). At the time of first compilation
* (or re-compilation), this resolver is processed (see
* tclProc.c:InitResolvedLocals()). It registers two handlers for a
* given, colon-prefixed variable found in the script: the actual
* variable fetcher and a variable cleanup handler. The variable
* fetcher is executed whenever a Tcl call frame is initialized and
* the array of compiled locals is constructed (see also
* InitResolvedLocals()).
*
* The Tcl var resolver protocol dictates that per-namespace
* compiling var resolvers take precedence over this per-interp
* compiling var resolver. That is, per-namespace resolvers are
* processed first and can effectively outrule per-interp
* resolvers by signaling TCL_OK or TCL_BREAK.
*
* Results:
* TCL_OK or TCL_CONTINUE (according to Tcl's var resolver protocol)
*
* Side effects:
* Registers per-variable resolution and cleanup handlers.
*
*----------------------------------------------------------------------
*/
static int InterpCompiledColonVarResolver(Tcl_Interp *interp, CONST84 char *name, int length,
Tcl_Namespace *UNUSED(context), Tcl_ResolvedVarInfo **rPtr)
nonnull(1) nonnull(2) nonnull(5);
static int
InterpCompiledColonVarResolver(Tcl_Interp *interp,
CONST84 char *name, int length, Tcl_Namespace *UNUSED(context),
Tcl_ResolvedVarInfo **rPtr) {
/*
* The variable handler is registered, when we have an active Next Scripting
* object and the variable starts with the appropriate prefix. Note
* that getting the "self" object is a weak protection against
* handling of wrong vars
*/
NsfObject *object = GetSelfObj(interp);
assert(interp != NULL);
assert(name != NULL);
assert(rPtr != NULL);
#if defined(VAR_RESOLVER_TRACE)
fprintf(stderr, "compiled var resolver for %s, obj %p\n", name, object);
#endif
if (object && FOR_COLON_RESOLVER(name)) {
NsfResolvedVarInfo *resVarInfo = NEW(NsfResolvedVarInfo);
resVarInfo->vInfo.fetchProc = CompiledColonVarFetch;
resVarInfo->vInfo.deleteProc = CompiledColonVarFree; /* if NULL, Tcl does a ckfree on proc clean up */
resVarInfo->lastObject = NULL;
resVarInfo->var = NULL;
resVarInfo->nameObj = Tcl_NewStringObj(name+1, length-1);
INCR_REF_COUNT(resVarInfo->nameObj);
#if defined(VAR_RESOLVER_TRACE)
fprintf(stderr, "... resVarInfo %p nameObj %p '%s' obj %p %s\n",
resVarInfo, resVarInfo->nameObj, ObjStr(resVarInfo->nameObj),
object, ObjectName(object));
#endif
*rPtr = (Tcl_ResolvedVarInfo *)resVarInfo;
return TCL_OK;
}
return TCL_CONTINUE;
}
/*
*----------------------------------------------------------------------
* InterpGetFrameAndFlags --
*
* Return for the provided interp the flags of the frame (returned as
* result) and the actual varFrame (returned in the second argument). In
* case, the toplevel frame is a LAMBDA frame, skip it.
*
* Results:
* Frame flags, varFrame
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
NSF_INLINE static int InterpGetFrameAndFlags(Tcl_Interp *interp, CallFrame **framePtr) nonnull(1) nonnull(2);
NSF_INLINE static int
InterpGetFrameAndFlags(Tcl_Interp *interp, CallFrame **framePtr) {
int frameFlags;
assert(interp != NULL);
assert(framePtr != NULL);
*framePtr = Tcl_Interp_varFramePtr(interp);
frameFlags = Tcl_CallFrame_isProcCallFrame(*framePtr);
/*
* If the resolver is called from a lambda frame, use always the parent frame
*/
if ((frameFlags & FRAME_IS_LAMBDA)) {
*framePtr = (CallFrame *)Tcl_CallFrame_callerPtr(*framePtr);
frameFlags = Tcl_CallFrame_isProcCallFrame(*framePtr);
#if defined(VAR_RESOLVER_TRACE)
fprintf(stderr, "InterpColonVarResolver skip lambda frame flags %.6x\n",
Tcl_CallFrame_isProcCallFrame(*framePtr));
#endif
}
#if defined(VAR_RESOLVER_TRACE)
fprintf(stderr, "... final frame flags %.6x\n",frameFlags);
#endif
return frameFlags;
}
/*
*----------------------------------------------------------------------
* InterpColonVarResolver --
*
* For accessing object (instance) variables using the colon-prefix
* notation (":/varName/"), we provide our own var resolvers. This
* function is the non-compiling var resolver; its services are
* requested in two situations: a) when evaluating non-compiled
* statements, b) when executing slow-path bytecode instructions,
* with "slow path" referring to bytecode instructions not making
* use of the compiled locals array (and, e.g., reverting to
* TclObjLookupVar*() calls).
*
* The Tcl var resolver protocol dictates that per-namespace,
* non-compiling var resolvers take precedence over this per-interp
* non-compiling var resolver. That is, per-namespace resolvers are
* processed first and can effectively outrule per-interp resolvers
* by signaling TCL_OK or TCL_BREAK. See
* e.g. TclLookupSimpleVar().
*
* Results:
* TCL_OK or TCL_CONTINUE (according to on Tcl's var resolver protocol)
*
* Side effects:
* If successful, return varPtr, pointing to instance variable.
*
*----------------------------------------------------------------------
*/
static int InterpColonVarResolver(Tcl_Interp *interp, const char *varName, Tcl_Namespace *UNUSED(nsPtr),
int flags, Tcl_Var *varPtr)
nonnull(1) nonnull(2) nonnull(5);
static int
InterpColonVarResolver(Tcl_Interp *interp, const char *varName, Tcl_Namespace *UNUSED(nsPtr),
int flags, Tcl_Var *varPtr) {
int new, frameFlags;
CallFrame *varFramePtr;
TclVarHashTable *varTablePtr;
NsfObject *object;
Tcl_Obj *keyObj;
Tcl_Var var;
assert(interp != NULL);
assert(varName != NULL);
assert(varPtr != NULL);
/*
* TCL_GLOBAL_ONLY is removed, since "vwait :varName" is called with
* with this flag.
*/
if (!FOR_COLON_RESOLVER(varName) || (flags & (/*TCL_GLOBAL_ONLY|*/TCL_NAMESPACE_ONLY))) {
/* ordinary names and global lookups are not for us */
#if defined(VAR_RESOLVER_TRACE)
fprintf(stderr, "InterpColonVarResolver '%s' flags %.6x not for us\n",
varName, flags);
#endif
return TCL_CONTINUE;
}
frameFlags = InterpGetFrameAndFlags(interp, &varFramePtr);
if (likely(frameFlags & FRAME_IS_NSF_METHOD)) {
if ((*varPtr = CompiledLocalsLookup(varFramePtr, varName))) {
/*
* This section is reached under notable circumstances and represents a
* point of interaction between our resolvers for non-compiled (i.e.,
* InterpColonVarResolver()) and compiled script execution (i.e.,
* InterpCompiledColonVarResolver()).
*
* Expect this branch to be hit iff...
*
* 1. ... InterpCompiledColonVarResolver() is called from within the Tcl
* bytecode interpreter when executing a bytecode-compiled script on a
* *slow path* (i.e., involving a TclObjLookupVarEx() call)
*
* 2. ... the act of variable resolution (i.e., TclObjLookupVarEx()) has
* not been restricted to the global (TCL_GLOBAL_ONLY) or an effective
* namespace (TCL_NAMESPACE_ONLY)
*
* 3. ..., resulting from the fact of participating in an bytecode
* interpretation, CompiledColonVarFetch() stored a link variable
* (pointing to the actual/real object variable, whether defined or not)
* under the given varName value into the current call frame's array of
* compiled locals (when initializing the call frame; see
* tclProc.c:InitResolvedLocals()).
*/
#if defined(VAR_RESOLVER_TRACE)
fprintf(stderr, ".... found local %s varPtr %p flags %.6x\n",
varName, *varPtr, flags);
#endif
/*
* By looking up the compiled-local directly and signaling TCL_OK, we
* optimise a little by avoiding further lookups down the Tcl var
* resolution infrastructure. Note that signaling TCL_CONTINUE would
* work too, however, it would involve extra resolution overhead.
*/
return TCL_OK;
}
object = ((NsfCallStackContent *)varFramePtr->clientData)->self;
} else if (frameFlags & FRAME_IS_NSF_CMETHOD) {
object = ((NsfCallStackContent *)varFramePtr->clientData)->self;
} else if (frameFlags & FRAME_IS_NSF_OBJECT) {
object = (NsfObject *)(varFramePtr->clientData);
} else {
#if defined(VAR_RESOLVER_TRACE)
fprintf(stderr, ".... not found %s\n", varName);
#endif
return TCL_CONTINUE;
}
/*
* Trim the varName for the colon prefix (":").
*/
varName ++;
/*
* We have an object and create the variable if not found
*/
assert(object != NULL);
if (unlikely(object->nsPtr != NULL)) {
varTablePtr = Tcl_Namespace_varTablePtr(object->nsPtr);
} else if (likely(object->varTablePtr != NULL)) {
varTablePtr = object->varTablePtr;
} else {
/*
* In most situations, we have a varTablePtr through the clauses
* above. However, if someone redefines e.g. the method "configure" or
* "objectparameter", we might find an object with an still empty
* varTable, since these are lazy initiated.
*/
varTablePtr = object->varTablePtr = VarHashTableCreate();
}
assert(varTablePtr != NULL);
/*fprintf(stderr, "Object Var Resolver, name=%s, obj %p, nsPtr %p, varTablePtr %p\n",
varName, object, object->nsPtr, varTablePtr);*/
keyObj = Tcl_NewStringObj(varName, -1);
INCR_REF_COUNT(keyObj);
var = (Tcl_Var)VarHashCreateVar(varTablePtr, keyObj, NULL);
if (likely(var != NULL)) {
#if defined(VAR_RESOLVER_TRACE)
fprintf(stderr, ".... found in hash-table %s %p flags %.6x ns %p\n",
varName, var, ((Var *)var)->flags, object->nsPtr);
#endif
/* make coverage analysis easier */
assert(1);
} else {
/*
* We failed to find the variable, therefore we create it new
*/
var = (Tcl_Var)VarHashCreateVar(varTablePtr, keyObj, &new);
#if defined(VAR_RESOLVER_TRACE)
fprintf(stderr, ".... var %p %s created in hash-table %p\n", var, varName, varTablePtr);
#endif
}
*varPtr = var;
DECR_REF_COUNT(keyObj);
return TCL_OK;
}
/*********************************************************
*
* End of var resolvers
*
*********************************************************/
/*********************************************************
*
* Begin of cmd resolver
*
*********************************************************/
/*
*----------------------------------------------------------------------
* InterpColonCmdResolver --
*
* Resolve command names. If the command starts with the Next
* Scripting specific prefix and we are on an Next Scripting stack
* frame, treat command as OO method.
*
* Results:
* TCL_OK or TCL_CONTINUE (based on Tcl's command resolver protocol)
*
* Side effects:
* If successful, return cmdPtr, pointing to method.
*
*----------------------------------------------------------------------
*/
static int InterpColonCmdResolver(Tcl_Interp *interp, const char *cmdName, Tcl_Namespace *UNUSED(nsPtr),
unsigned int flags, Tcl_Command *cmdPtr) nonnull(1) nonnull(2) nonnull(5);
static int
InterpColonCmdResolver(Tcl_Interp *interp, const char *cmdName, Tcl_Namespace *UNUSED(nsPtr),
unsigned int flags, Tcl_Command *cmdPtr) {
CallFrame *varFramePtr;
int frameFlags;
assert(interp != NULL);
assert(cmdName != NULL);
assert(cmdPtr != NULL);
/* fprintf(stderr, "InterpColonCmdResolver %s flags %.6x\n", cmdName, flags); */
if (likely((*cmdName == ':' && *(cmdName + 1) == ':') || flags & TCL_GLOBAL_ONLY)) {
/* fully qualified names and global lookups are not for us */
/*fprintf(stderr, "... not for us %s flags %.6x\n", cmdName, flags);*/
return TCL_CONTINUE;
}
frameFlags = InterpGetFrameAndFlags(interp, &varFramePtr);
/*
* The resolver is called as well, when a body of a method is
* compiled. In these situations, Tcl stacks a non-proc frame, that
* we have to skip. In order to safely identify such situations, we
* stuff into the call flags of the proc frame during the
* compilation step NSF_CSC_CALL_IS_COMPILE.
*/
if (frameFlags == 0 && Tcl_CallFrame_callerPtr(varFramePtr)) {
varFramePtr = (CallFrame *)Tcl_CallFrame_callerPtr(varFramePtr);
frameFlags = Tcl_CallFrame_isProcCallFrame(varFramePtr);
if ((frameFlags & (FRAME_IS_NSF_METHOD)) == 0
|| (((NsfCallStackContent *)varFramePtr->clientData)->flags & NSF_CSC_CALL_IS_COMPILE) == 0
) {
frameFlags = 0;
} else {
#if defined(CMD_RESOLVER_TRACE)
fprintf(stderr, "InterpColonCmdResolver got parent frame cmdName %s flags %.6x, frame flags %.6x\n",
cmdName, flags, Tcl_CallFrame_isProcCallFrame(varFramePtr));
#endif
}
}
#if defined(CMD_RESOLVER_TRACE)
fprintf(stderr, "InterpColonCmdResolver cmdName %s flags %.6x, frame flags %.6x\n",
cmdName, flags, frameFlags);
#endif
if (frameFlags & (FRAME_IS_NSF_METHOD|FRAME_IS_NSF_OBJECT|FRAME_IS_NSF_CMETHOD )) {
if (*cmdName == ':') {
#if defined(CMD_RESOLVER_TRACE)
fprintf(stderr, " ... call colonCmd for %s\n", cmdName);
#endif
/*
* We have a cmd starting with ':', we are in an nsf frame, so
* forward to the colonCmd.
*/
*cmdPtr = RUNTIME_STATE(interp)->colonCmd;
return TCL_OK;
} else {
#if defined(NSF_WITH_OS_RESOLVER)
/*
* Experimental Object-System specific resolver: If an
* un-prefixed method name is found in a body of a method, we try
* to perform a lookup for this method in the namespace of the
* object system for the current object. If this lookup is not
* successful the standard lookups are performed. The
* object-system specific resolver allows to use the "right"
* (un-prefixed) "self" or "next" calls without namespace
* imports.
*/
NsfObject *object;
NsfObjectSystem *osPtr;
if (frameFlags & (FRAME_IS_NSF_METHOD|FRAME_IS_NSF_CMETHOD)) {
object = ((NsfCallStackContent *)varFramePtr->clientData)->self;
} else if (frameFlags & (FRAME_IS_NSF_OBJECT)) {
object = (NsfObject *)(varFramePtr->clientData);
} else {
object = NULL;
}
if (object != NULL) {
Tcl_HashEntry *entryPtr;
Tcl_HashTable *cmdTablePtr;
Tcl_Command cmd;
osPtr = GetObjectSystem(object);
cmd = osPtr->rootClass->object.id;
cmdTablePtr = Tcl_Namespace_cmdTablePtr(((Command *)cmd)->nsPtr);
entryPtr = Tcl_CreateHashEntry(cmdTablePtr, cmdName, NULL);
/*fprintf(stderr, "InterpColonCmdResolver OS specific resolver tried to lookup %s for os %s in ns %s\n",
cmdName, ClassName(osPtr->rootClass), ((Command *)cmd)->nsPtr->fullName);*/
if (entryPtr != NULL) {
/*fprintf(stderr, "InterpColonCmdResolver OS specific resolver found %s::%s\n",
((Command *)cmd)->nsPtr->fullName, cmdName);*/
*cmdPtr = Tcl_GetHashValue(entryPtr);
return TCL_OK;
}
}
#endif
}
}
#if defined(CMD_RESOLVER_TRACE)
fprintf(stderr, " ... not found %s\n", cmdName);
NsfShowStack(interp);
#endif
return TCL_CONTINUE;
}
/*********************************************************
*
* End of cmd resolver
*
*********************************************************/
/*
*----------------------------------------------------------------------
* NsfNamespaceInit --
*
* Initialize a provided namespace by setting its resolvers and
* namespace path
*
* Results:
* none
*
* Side effects:
* change ns behavior
*
*----------------------------------------------------------------------
*/
static void NsfNamespaceInit(Tcl_Namespace *nsPtr) nonnull(1);
static void
NsfNamespaceInit(Tcl_Namespace *nsPtr) {
assert(nsPtr != NULL);
/*
* This puts a per-object namespace resolver into position upon
* acquiring the namespace. Works for object-scoped commands/procs
* and object-only ones (set, unset, ...)
*/
Tcl_SetNamespaceResolvers(nsPtr,
(Tcl_ResolveCmdProc *)NULL,
NsColonVarResolver,
(Tcl_ResolveCompiledVarProc *)NULL);
#if defined(NSF_WITH_INHERIT_NAMESPACES)
/*
* In case there is a namespace path set for the parent namespace,
* apply this as well to the object namespace to avoid surprises
* with "namespace path nx".
*/
{ Namespace *parentNsPtr = Tcl_Namespace_parentPtr(nsPtr);
int pathLength = Tcl_Namespace_commandPathLength(parentNsPtr);
if (pathLength > 0) {
Namespace **pathArray = (Namespace **)ckalloc(sizeof(Namespace *) * pathLength);
NamespacePathEntry *tmpPathArray = Tcl_Namespace_commandPathArray(parentNsPtr);
int i;
for (i = 0; i < pathLength; i++) {
pathArray[i] = tmpPathArray[i].nsPtr;
}
TclSetNsPath((Namespace *)nsPtr, pathLength, (Tcl_Namespace **)pathArray);
ckfree((char *)pathArray);
}
}
#endif
}
static NsfObject *
NSNamespaceClientDataObject(ClientData clientData) {
#ifdef NSF_MEM_COUNT
NsfNamespaceClientData *nsClientData = (NsfNamespaceClientData *)clientData;
assert(clientData != NULL);
/*fprintf(stderr, "NSNamespaceDeleteProc cd %p\n", clientData);
fprintf(stderr, "... nsPtr %p name '%s'\n", nsClientData->nsPtr, nsClientData->nsPtr->fullName);*/
return nsClientData->object;
#else
assert(clientData != NULL);
return (NsfObject *) clientData;
#endif
}
/*
*----------------------------------------------------------------------
* SlotContainerCmdResolver --
*
* This is a specialized cmd resolver for slotcontainer. The command
* resolver should be registered for a namespace and avoids the lookup of
* childobjs for unqualified calls. This way, it is e.g. possible to call
* in a slot-obj a method [list], even in cases, where a a property "list"
* is defined.
*
* Results:
* either TCL_CONTINUE or TCL_OK;
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int SlotContainerCmdResolver(Tcl_Interp *interp, const char *cmdName,
Tcl_Namespace *nsPtr, unsigned int flags, Tcl_Command *cmdPtr)
nonnull(1) nonnull(2) nonnull(3) nonnull(5);
static int
SlotContainerCmdResolver(Tcl_Interp *interp, const char *cmdName,
Tcl_Namespace *nsPtr, unsigned int flags, Tcl_Command *cmdPtr) {
assert(cmdName != NULL);
assert(nsPtr != NULL);
assert(cmdPtr != NULL);
if (*cmdName == ':' || (flags & TCL_GLOBAL_ONLY)) {
/* colon names (InterpColonCmdResolver) and global lookups are not for us */
return TCL_CONTINUE;
}
/*fprintf(stderr, "SlotContainerCmdResolver called with %s ns %s ourNs %d clientData %p\n",
cmdName, nsPtr->fullName, nsPtr->deleteProc == NSNamespaceDeleteProc,
nsPtr->clientData);*/
/*
* Check, if this already a namespace handled by NSF
*/
if (nsPtr->deleteProc == NSNamespaceDeleteProc && nsPtr->clientData) {
NsfObject *parentObject = NSNamespaceClientDataObject(nsPtr->clientData);
/*fprintf(stderr, "SlotContainerCmdResolver parentObject %p %s\n",
parentObject, ObjectName(parentObject));*/
/*
* Make global lookups when the parent is a slotcontainer
*/
/* parentObject = (NsfObject *) GetObjectFromString(interp, nsPtr->fullName);*/
if ((parentObject->flags & NSF_IS_SLOT_CONTAINER)) {
Tcl_Command cmd = Tcl_FindCommand(interp, cmdName, NULL, TCL_GLOBAL_ONLY);
if (cmd != NULL) {
*cmdPtr = cmd;
return TCL_OK;
}
}
}
return TCL_CONTINUE;
}
/*
*----------------------------------------------------------------------
* RequireObjNamespace --
*
* Obtain for an object a namespace if necessary and initialize it.
* In this function, variables existing outside of the namespace
* get copied over to thew fresh namespace.
*
* Results:
* Tcl_Namespace
*
* Side effects:
* Allocate pot. a namespace
*
*----------------------------------------------------------------------
*/
static Tcl_Namespace *
RequireObjNamespace(Tcl_Interp *interp, NsfObject *object) {
assert(interp != NULL);
assert(object != NULL);
if (object->nsPtr == NULL) {
MakeObjNamespace(interp, object);
NsfNamespaceInit(object->nsPtr);
}
assert(object->nsPtr);
return object->nsPtr;
}
/*
* Namespace related commands
*/
/*
*----------------------------------------------------------------------
* NSNamespacePreserve --
*
* Increment namespace refCount
*
* Results:
* void
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static void
NSNamespacePreserve(Tcl_Namespace *nsPtr) {
assert(nsPtr != NULL);
MEM_COUNT_ALLOC("NSNamespace", nsPtr);
Tcl_Namespace_refCount(nsPtr)++;
}
/*
*----------------------------------------------------------------------
* NSNamespaceRelease --
*
* Decrement namespace refCount and free namespace if necessary
*
* Results:
* void
*
* Side effects:
* Free pot. memory
*
*----------------------------------------------------------------------
*/
static void
NSNamespaceRelease(Tcl_Namespace *nsPtr) {
assert(nsPtr != NULL);
MEM_COUNT_FREE("NSNamespace", nsPtr);
Tcl_Namespace_refCount(nsPtr)--;
if (unlikely(Tcl_Namespace_refCount(nsPtr) == 0 && (Tcl_Namespace_flags(nsPtr) & NS_DEAD))) {
/*
* The namespace refCount has reached 0, we have to free
* it. unfortunately, NamespaceFree() is not exported
*/
/*fprintf(stderr, "HAVE TO FREE namespace %p\n", nsPtr); */
/*NamespaceFree(nsPtr);*/
ckfree(nsPtr->fullName);
ckfree(nsPtr->name);
ckfree((char *)nsPtr);
}
}
/*
*----------------------------------------------------------------------
* NSDeleteCmd --
*
* Delete the Tcl command for the provided methodName located in
* the provided namespace.
*
* Results:
* Tcl result or -1, if no such method exists int.
*
* Side effects:
* Command is deleted.
*
*----------------------------------------------------------------------
*/
static int
NSDeleteCmd(Tcl_Interp *interp, Tcl_Namespace *nsPtr, const char *methodName) {
Tcl_Command token;
assert(interp != NULL);
assert(nsPtr != NULL);
assert(methodName != NULL);
if ((token = FindMethod(nsPtr, methodName))) {
return Tcl_DeleteCommandFromToken(interp, token);
}
return -1;
}
/*
*----------------------------------------------------------------------
* NSDeleteChild --
*
* Delete a child of an object in cases, when the parent object is
* deleted. It is designed to delete either objects or classes to
* be a little bit more graceful on destuctors. Not perfect yet.
*
* Results:
* None.
*
* Side effects:
* Might destroy an object.
*
*----------------------------------------------------------------------
*/
static int NSDeleteChild(Tcl_Interp *interp, Tcl_Command cmd, int deleteObjectsOnly) nonnull(1) nonnull(2);
static int
NSDeleteChild(Tcl_Interp *interp, Tcl_Command cmd, int deleteObjectsOnly) {
assert(cmd != NULL);
assert(interp != NULL);
/*fprintf(stderr, "NSDeleteChildren child %p flags %.6x epoch %d\n",
cmd, Tcl_Command_flags(cmd), Tcl_Command_cmdEpoch(cmd));*/
/*
* In some situations (e.g. small buckets, less than 12 entries), we
* get from the cmd-table already deleted cmds; we had previously an
* assert(Tcl_Command_cmdEpoch(cmd) == 0);
* which will fail in such cases.
*/
if (!Tcl_Command_cmdEpoch(cmd)) {
NsfObject *object = NsfGetObjectFromCmdPtr(cmd);
/*fprintf(stderr, "NSDeleteChildren child %p (%s) epoch %d\n",
cmd, Tcl_GetCommandName(interp, cmd), Tcl_Command_cmdEpoch(cmd));*/
if (object == NULL) {
/*
* This is just a plain Tcl command; let Tcl handle the
* deletion.
*/
return 0;
}
/*fprintf(stderr, "NSDeleteChild check %p %s true child %d\n",
object, ObjectName(object), object->id == cmd);*/
/* delete here just true children */
if (object->id == cmd) {
if (deleteObjectsOnly && NsfObjectIsClass(object)) {
return 0;
}
/*fprintf(stderr, "NSDeleteChild destroy %p %s\n", object, ObjectName(object));*/
/* in the exit handler physical destroy --> directly call destroy */
if (RUNTIME_STATE(interp)->exitHandlerDestroyRound
== NSF_EXITHANDLER_ON_PHYSICAL_DESTROY) {
PrimitiveDestroy(object);
return 1;
} else {
if (object->teardown && !(object->flags & NSF_DESTROY_CALLED)) {
int result = DispatchDestroyMethod(interp, object, 0);
if (unlikely(result != TCL_OK)) {
/*
* The destroy method failed. However, we have to remove
* the command anyway, since its parent is currently being
* deleted.
*/
if (object->teardown != NULL && (object->flags & NSF_DURING_DELETE) == 0u) {
NsfLog(interp, NSF_LOG_NOTICE, "Destroy failed for object %s, perform low level deletion",
ObjectName(object));
CallStackDestroyObject(interp, object);
}
}
return 1;
}
}
} else {
/*fprintf(stderr, "NSDeleteChild remove alias %p %s\n", object, Tcl_GetCommandName(interp, cmd));*/
return AliasDeleteObjectReference(interp, cmd);
}
}
return 0;
}
/*
*----------------------------------------------------------------------
* NSDeleteChildren --
*
* Delete the child objects of a namespace.
*
* Results:
* None.
*
* Side effects:
* Might destroy child objects.
*
*----------------------------------------------------------------------
*/
static void NSDeleteChildren(Tcl_Interp *interp, Tcl_Namespace *nsPtr) nonnull(1) nonnull(2);
static void
NSDeleteChildren(Tcl_Interp *interp, Tcl_Namespace *nsPtr) {
Tcl_HashTable *cmdTablePtr = Tcl_Namespace_cmdTablePtr(nsPtr);
Tcl_HashSearch hSrch;
Tcl_HashEntry *hPtr;
int expected;
assert(interp != NULL);
assert(nsPtr != NULL);
#ifdef OBJDELETION_TRACE
fprintf(stderr, "NSDeleteChildren %p %s activationCount %d\n",
nsPtr, nsPtr->fullName, Tcl_Namespace_activationCount(nsPtr));
#endif
/*
* First, get rid of namespace imported objects; don't delete the
* object, but the reference.
*/
Tcl_ForgetImport(interp, nsPtr, "*"); /* don't destroy namespace imported objects */
#if OBJDELETION_TRACE
/*
* Deletion is always tricky. Show, what elements should be deleted
* in this loop. The actually deleted elements might be actually
* less, if a deletion of one item triggers the destroy of another
* item.
*/
for (hPtr = Tcl_FirstHashEntry(cmdTablePtr, &hSrch); hPtr;
hPtr = Tcl_NextHashEntry(&hSrch)) {
Tcl_Command cmd = (Tcl_Command)Tcl_GetHashValue(hPtr);
fprintf(stderr, "will destroy %p %s\n", cmd, Tcl_GetCommandName(interp, cmd));
}
#endif
/*
* Second, delete the objects.
*/
/*
* A destroy of one element of the hash-table can trigger the
* destroy of another item of the same table. Therefore we use
* Nsf_NextHashEntry(), which handles this case.
*/
for (hPtr = Tcl_FirstHashEntry(cmdTablePtr, &hSrch); hPtr;
hPtr = Nsf_NextHashEntry(cmdTablePtr, expected, &hSrch)) {
/*Tcl_Command cmd = (Tcl_Command)Tcl_GetHashValue(hPtr);
fprintf(stderr, "NSDeleteChild %p table %p numEntries before %d\n",
cmd, hPtr->tablePtr, cmdTablePtr->numEntries );*/
expected = cmdTablePtr->numEntries -
NSDeleteChild(interp, (Tcl_Command)Tcl_GetHashValue(hPtr), 1);
}
/*
* Finally, delete the classes.
*/
for (hPtr = Tcl_FirstHashEntry(cmdTablePtr, &hSrch); hPtr;
hPtr = Nsf_NextHashEntry(cmdTablePtr, expected, &hSrch)) {
expected = cmdTablePtr->numEntries -
NSDeleteChild(interp, (Tcl_Command)Tcl_GetHashValue(hPtr), 0);
}
}
/*
* delete all vars & procs in a namespace
*/
static void NSCleanupNamespace(Tcl_Interp *interp, Tcl_Namespace *nsPtr) nonnull(1) nonnull(2);
static void
NSCleanupNamespace(Tcl_Interp *interp, Tcl_Namespace *nsPtr) {
TclVarHashTable *varTablePtr = Tcl_Namespace_varTablePtr(nsPtr);
Tcl_HashTable *cmdTablePtr = Tcl_Namespace_cmdTablePtr(nsPtr);
Tcl_HashSearch hSrch;
Tcl_HashEntry *hPtr;
assert(interp != NULL);
assert(nsPtr != NULL);
#ifdef OBJDELETION_TRACE
fprintf(stderr, "NSCleanupNamespace %p flags %.6x\n", nsPtr, Tcl_Namespace_flags(nsPtr));
fprintf(stderr, "NSCleanupNamespace %p %.6x varTablePtr %p\n", nsPtr, ((Namespace *)nsPtr)->flags, varTablePtr);
#endif
/*
* Delete all variables and initialize var table again
* (DeleteVars frees the var-table)
*/
TclDeleteVars((Interp *)interp, varTablePtr);
TclInitVarHashTable(varTablePtr, (Namespace *)nsPtr);
/*
* Delete all user-defined procs in the namespace
*/
for (hPtr = Tcl_FirstHashEntry(cmdTablePtr, &hSrch); hPtr;
hPtr = Tcl_NextHashEntry(&hSrch)) {
Tcl_Command cmd = (Tcl_Command) Tcl_GetHashValue(hPtr);
if (CmdIsNsfObject(cmd)) {
/*
* Sub-objects should not be deleted here to preserve children
* deletion order. Just delete aliases.
*/
AliasDeleteObjectReference(interp, cmd);
continue;
}
/*fprintf(stderr, "NSCleanupNamespace calls DeleteCommandFromToken for %p flags %.6x\n",
cmd, ((Command *)cmd)->flags);
fprintf(stderr, " cmd = %s\n", Tcl_GetCommandName(interp, cmd));
fprintf(stderr, " nsPtr = %p\n", ((Command *)cmd)->nsPtr);
fprintf(stderr, " epoch = %d\n", Tcl_Command_cmdEpoch(cmd));
fprintf(stderr, " refCount = %d\n", Tcl_Command_refCount(cmd));
fprintf(stderr, " flags %.6x\n", ((Namespace *)((Command *)cmd)->nsPtr)->flags);*/
Tcl_DeleteCommandFromToken(interp, cmd);
}
}
static void
NSNamespaceDeleteProc(ClientData clientData) {
NsfObject *object = NSNamespaceClientDataObject(clientData);
assert(clientData != NULL);
#ifdef NSF_MEM_COUNT
ckfree((char *)clientData);
#endif
assert(object != NULL);
/*fprintf(stderr, "namespace delete-proc obj=%p ns=%p\n",
clientData, (object != NULL) ? object->nsPtr : NULL);*/
MEM_COUNT_FREE("NSNamespace", object->nsPtr);
object->nsPtr = NULL;
}
void Nsf_DeleteNamespace(Tcl_Interp *interp, Tcl_Namespace *nsPtr) nonnull(1) nonnull(2);
void
Nsf_DeleteNamespace(Tcl_Interp *interp, Tcl_Namespace *nsPtr) {
int activationCount = 0;
Tcl_CallFrame *f = (Tcl_CallFrame *)Tcl_Interp_framePtr(interp);
assert(interp != NULL);
assert(nsPtr != NULL);
/*fprintf(stderr, "Nsf_DeleteNamespace %p ", nsPtr);*/
while (f) {
if (f->nsPtr == nsPtr) {
activationCount++;
}
f = Tcl_CallFrame_callerPtr(f);
}
#if !defined(NDEBUG)
if (Tcl_Namespace_activationCount(nsPtr) != activationCount) {
fprintf(stderr, "WE HAVE TO FIX ACTIVATIONCOUNT\n");
Tcl_Namespace_activationCount(nsPtr) = activationCount;
}
#endif
assert(Tcl_Namespace_activationCount(nsPtr) == activationCount);
/*fprintf(stderr, "to %d. \n", ((Namespace *)nsPtr)->activationCount);*/
if (Tcl_Namespace_deleteProc(nsPtr)) {
/*fprintf(stderr, "calling deteteNamespace %s\n", nsPtr->fullName);*/
Tcl_DeleteNamespace(nsPtr);
}
}
/*
*----------------------------------------------------------------------
* NSValidObjectName --
*
* Check the provided colons in an object name. If the name is
* valid, the function returns 1, otherwise 0.
*
* Results:
* returns 1 on success
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
NSF_INLINE static int NSValidObjectName(const char *name, size_t l) nonnull(1);
NSF_INLINE static int
NSValidObjectName(const char *name, size_t l) {
register const char *n;
assert(name != NULL);
n = name;
if (*n == '\0') return 0; /* empty name */
if (l == 0) l = strlen(n);
if (*(n+l-1) == ':') return 0; /* name ends with : */
if (*n == ':' && *(n+1) != ':') return 0; /* name begins with single : */
for (; *n != '\0'; n++) {
if (*n == ':' && *(n+1) == ':' && *(n+2) == ':') {
return 0; /* more than 2 colons in series in a name */
}
}
return 1;
}
/*
*----------------------------------------------------------------------
* NSGetFreshNamespace --
*
* Create an object namespace, provide a deleteProc (avoid
* interference between object and namespace deletion order) and
* keep the object as client data.
*
* Results:
* Tcl_Namespace
*
* Side effects:
* might allocate a namespace
*
*----------------------------------------------------------------------
*/
static Tcl_Namespace*
NSGetFreshNamespace(Tcl_Interp *interp, NsfObject *object, const char *name) {
Namespace *dummy1Ptr, *dummy2Ptr, *nsPtr;
const char *dummy;
assert(interp != NULL);
assert(object != NULL);
assert(name != NULL);
TclGetNamespaceForQualName(interp, name, NULL, TCL_FIND_ONLY_NS|TCL_CREATE_NS_IF_UNKNOWN,
&nsPtr, &dummy1Ptr, &dummy2Ptr, &dummy);
if (nsPtr->deleteProc != NSNamespaceDeleteProc) {
/*
* Avoid hijacking a namespace with different client data
*/
if (nsPtr->deleteProc || nsPtr->clientData) {
Tcl_Panic("Namespace '%s' exists already with delProc %p and clientData %p; "
"Can only convert a plain Tcl namespace into an nsf namespace, my delete Proc %p",
name, nsPtr->deleteProc, nsPtr->clientData, NSNamespaceDeleteProc);
}
{
#ifdef NSF_MEM_COUNT
NsfNamespaceClientData *nsClientData = (NsfNamespaceClientData *)ckalloc(sizeof(NsfNamespaceClientData));
nsClientData->object = object;
nsClientData->nsPtr = (Tcl_Namespace *)nsPtr;
nsPtr->clientData = nsClientData;
/*fprintf(stderr, "Adding NsfNamespaceClientData nsPtr %p cd %p name '%s'\n",
nsPtr, nsClientData, nsPtr->fullName);*/
#else
nsPtr->clientData = object;
#endif
nsPtr->deleteProc = (Tcl_NamespaceDeleteProc *)NSNamespaceDeleteProc;
}
MEM_COUNT_ALLOC("NSNamespace", nsPtr);
} else {
fprintf(stderr, "NSGetFreshNamespace: reusing namespace %p %s\n", (void *)nsPtr, nsPtr->fullName);
}
return (Tcl_Namespace *)nsPtr;
}
/*
*----------------------------------------------------------------------
* NSRequireParentObject --
*
* Try to require a parent object (e.g. during ttrace). This function
* tries to load a parent object via ::nsf::object::unknown.
*
* Results:
* returns 1 on success
*
* Side effects:
* might create an object
*
*----------------------------------------------------------------------
*/
static int NSRequireParentObject(Tcl_Interp *interp, const char *parentName) nonnull(1) nonnull(2);
static int
NSRequireParentObject(Tcl_Interp *interp, const char *parentName) {
int result;
assert(interp != NULL);
assert(parentName != NULL);
result = NsfCallObjectUnknownHandler(interp, Tcl_NewStringObj(parentName, -1));
if (likely(result == TCL_OK)) {
NsfObject *parentObj = (NsfObject *) GetObjectFromString(interp, parentName);
if (parentObj != NULL) {
RequireObjNamespace(interp, parentObj);
}
result = (Tcl_FindNamespace(interp, parentName,
(Tcl_Namespace *) NULL, TCL_GLOBAL_ONLY) != NULL);
}
return result;
}
/*
*----------------------------------------------------------------------
* NSCheckNamespace --
*
* Check if a namespace with the given name exists. If not, make
* sure that a potential parent object has already required a
* namespace. If there is no parent namespace yet, try to create a
* parent object via __unknown.
* If the provided parentNsPtr is not NULL, we know, that (a) the
* provided name was relative and simple (contains no ":"
* characters) and that (b) this namespace was used to build a fully
* qualified name. In theses cases, the parentNsPtr points already
* to the parentName, containing potentially a parent Object. In
* all other cases, the parent name is either obtained from the
* full namespace, or from string operations working on the
* provided name.
*
* Results:
* Tcl_Namespace for the provided name
*
* Side effects:
* might create parent objects
*
*----------------------------------------------------------------------
*/
NSF_INLINE static Tcl_Namespace *NSCheckNamespace(Tcl_Interp *interp, const char *nameString, Tcl_Namespace *parentNsPtr1)
nonnull(1) nonnull(2);
NSF_INLINE static Tcl_Namespace *
NSCheckNamespace(Tcl_Interp *interp, const char *nameString, Tcl_Namespace *parentNsPtr1) {
Namespace *nsPtr, *dummy1Ptr, *dummy2Ptr, *parentNsPtr = (Namespace *)parentNsPtr1;
const char *parentName, *dummy, *n;
Tcl_DString ds, *dsPtr = &ds;
int parentNameLength;
assert(interp != NULL);
assert(nameString != NULL);
/*fprintf(stderr, "NSCheckNamespace %s parentNsPtr %p\n", nameString, parentNsPtr);*/
/*
* Check, if there is a already a namespace for the full name. The
* namespace will be seldomly here, but we have to make this check
* in every case. If there is a full namespace, we can use it to
* determine the parent name.
*/
TclGetNamespaceForQualName(interp, nameString, NULL,
TCL_GLOBAL_ONLY|TCL_FIND_ONLY_NS,
&nsPtr, &dummy1Ptr, &dummy2Ptr, &dummy);
/*fprintf(stderr,
"before create calls TclGetNamespaceForQualName with %s => %p (%s) %p %s %p %s %p %s\n",
nameString, nsPtr, (nsPtr != NULL) ? nsPtr->fullName : "",
dummy1Ptr, (dummy1Ptr != NULL) ? dummy1Ptr->fullName : "",
parentNsPtr, (parentNsPtr != NULL) ? parentNsPtr->fullName : "",
dummy, (dummy != NULL) ? dummy : "");*/
/*
* If there is a parentNs provided (or obtained from the full
* namespace), we can determine the parent name from it. Otherwise,
* we have to to perform the string operations.
*/
if (parentNsPtr == NULL && nsPtr) {
parentNsPtr = Tcl_Namespace_parentPtr(nsPtr);
}
if (parentNsPtr != NULL) {
parentNameLength = 0;
parentName = parentNsPtr->fullName;
if (*(parentName + 2) == '\0') {
parentName = NULL;
}
/*fprintf(stderr, "NSCheckNamespace parentNs %s parentName of '%s' => '%s'\n",
parentNsPtr->fullName, nameString, parentName);*/
} else {
n = nameString + strlen(nameString);
/*
* search for last '::'
*/
while ((*n != ':' || *(n-1) != ':') && n-1 > nameString) {n--; }
if (*n == ':' && n > nameString && *(n-1) == ':') {n--;}
parentNameLength = n-nameString;
if (parentNameLength > 0) {
DSTRING_INIT(dsPtr);
Tcl_DStringAppend(dsPtr, nameString, parentNameLength);
parentName = Tcl_DStringValue(dsPtr);
} else {
parentName = NULL;
}
}
if (parentName != NULL) {
NsfObject *parentObj;
parentObj = (NsfObject *) GetObjectFromString(interp, parentName);
/*fprintf(stderr, "parentName %s parentObj %p\n", parentName, parentObj);*/
if (parentObj != NULL) {
RequireObjNamespace(interp, parentObj);
} else if (nsPtr == NULL && parentNsPtr == NULL) {
TclGetNamespaceForQualName(interp, parentName, NULL,
TCL_GLOBAL_ONLY|TCL_FIND_ONLY_NS,
&parentNsPtr, &dummy1Ptr,
&dummy2Ptr, &dummy);
if (parentNsPtr == NULL) {
/*fprintf(stderr, "===== calling NSRequireParentObject %s %p\n", parentName, cl);*/
NSRequireParentObject(interp, parentName);
}
}
if (parentNameLength > 0) {
DSTRING_FREE(dsPtr);
}
}
return (Tcl_Namespace *)nsPtr;
}
/*
*----------------------------------------------------------------------
* NSFindCommand --
*
* Find the "real" command belonging eg. to an Next Scripting class or object.
* Do not return cmds produced by Tcl_Import, but the "real" cmd
* to which they point.
*
* Results:
* Tcl_Command or NULL
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
NSF_INLINE static Tcl_Command NSFindCommand(Tcl_Interp *interp, const char *name) nonnull(1) nonnull(2);
NSF_INLINE static Tcl_Command
NSFindCommand(Tcl_Interp *interp, const char *name) {
Tcl_Command cmd;
assert(interp != NULL);
assert(name != NULL);
assert(*name == ':' && *(name + 1) == ':');
cmd = Tcl_FindCommand(interp, name, NULL, TCL_GLOBAL_ONLY);
if (likely(cmd != NULL)) {
Tcl_Command importedCmd = TclGetOriginalCommand(cmd);
if (unlikely(importedCmd != NULL)) {
cmd = importedCmd;
}
}
return cmd;
}
#if !defined(NDEBUG)
/*
*----------------------------------------------------------------------
* ReverseLookupCmdFromCmdTable --
*
* Allows for looking up objects in command tables (e.g., namespace cmd
* tables, the interp's hidden cmd table) based on their command pointer
* (rather than their command name).
*
* Results:
* NsfObject* or NULL
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int ReverseLookupCmdFromCmdTable(Tcl_Interp *interp /* needed? */, Tcl_Command searchCmdPtr,
Tcl_HashTable *cmdTablePtr) nonnull(1) nonnull(3);
static int
ReverseLookupCmdFromCmdTable(Tcl_Interp *interp /* needed? */, Tcl_Command searchCmdPtr,
Tcl_HashTable *cmdTablePtr) {
Tcl_HashSearch search;
Tcl_HashEntry *hPtr;
assert(searchCmdPtr != NULL);
assert(cmdTablePtr != NULL);
for (hPtr = Tcl_FirstHashEntry(cmdTablePtr, &search);
hPtr != NULL;
hPtr = Tcl_NextHashEntry(&search)) {
Tcl_Command needleCmdPtr = (Tcl_Command)Tcl_GetHashValue(hPtr);
if (needleCmdPtr == searchCmdPtr) {
return 1;
}
}
return 0;
}
/*
*----------------------------------------------------------------------
* GetHiddenObjectFromCmd --
*
* Obtains a hidden object for a specified cmd. The function uses a reverse
* lookup of *hidden* object structures based on their commands. This
* helper is needed for handling hidden and re-exposed objects during the
* shutdown and the cleanup of object systems.
*
* Results:
* NsfObject* or NULL
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static NsfObject * GetHiddenObjectFromCmd(Tcl_Interp *interp, Tcl_Command cmdPtr) nonnull(1);
static NsfObject *
GetHiddenObjectFromCmd(Tcl_Interp *interp, Tcl_Command cmdPtr) {
Interp *iPtr = (Interp *) interp;
NsfObject *screenedObject;
int found;
assert(cmdPtr != NULL);
/*
* We can provide a shortcut, knowing that a) exposed cmds have an epoch
* counter > 0, and b) the commands originating namespace must be the global
* one. See also Tcl_HideCommand() and Tcl_ExposeCommand().
*/
if (Tcl_Command_cmdEpoch(cmdPtr) == 0 ||
((Command *)cmdPtr)->nsPtr != iPtr->globalNsPtr) {
return NULL;
}
/*
* Reverse lookup object in the interp's hidden command table. We start
* off with the hidden cmds as we suspect their number being smaller than
* the re-exposed ones, living in the global namespace
*/
found = ReverseLookupCmdFromCmdTable(interp, cmdPtr, iPtr->hiddenCmdTablePtr);
if (found == 0) {
/*
* Reverse lookup object in the interp's global command table. Most likely
* needed due to hiding + exposing on a different name.
*/
found = ReverseLookupCmdFromCmdTable(interp, cmdPtr, &iPtr->globalNsPtr->cmdTable);
}
screenedObject = (found != 0) ? NsfGetObjectFromCmdPtr(cmdPtr) : NULL;
#if !defined(NDEBUG)
if (screenedObject != NULL) {
NsfLog(interp, NSF_LOG_NOTICE, "screened object %s found: object %p (%s) cmd %p",
Tcl_GetCommandName(interp, cmdPtr), (void *)screenedObject,
ObjectName(screenedObject), (void *)cmdPtr);
}
#endif
return screenedObject;
}
#endif
/*
*----------------------------------------------------------------------
* GetObjectFromString --
*
* Lookup an object from a given string. The function performs a
* command lookup (every object is a command) and checks, if the
* command is bound to an nsf object.
*
* Results:
* NsfObject* or NULL
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static NsfObject *
GetObjectFromString(Tcl_Interp *interp, const char *name) {
register Tcl_Command cmd;
assert(interp != NULL);
assert(name != NULL);
/*fprintf(stderr, "GetObjectFromString name = '%s'\n", name);*/
cmd = NSFindCommand(interp, name);
if (likely(cmd && CmdIsNsfObject(cmd))) {
/*fprintf(stderr, "GetObjectFromString %s => %p\n", name, Tcl_Command_objClientData(cmd));*/
return (NsfObject *)Tcl_Command_objClientData(cmd);
}
/*fprintf(stderr, "GetObjectFromString %s => NULL\n", name);*/
return NULL;
}
/*
*----------------------------------------------------------------------
* GetClassFromString --
*
* Lookup a class from a given string. The function performs an
* object lookup and checks, if the object is a class
*
* Results:
* NsfClass* or NULL
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static NsfClass *
GetClassFromString(Tcl_Interp *interp, const char *name) {
NsfObject *object = GetObjectFromString(interp, name);
assert(interp != NULL);
assert(name != NULL);
return (object && NsfObjectIsClass(object)) ? (NsfClass *)object : NULL;
}
/*
*----------------------------------------------------------------------
* CanRedefineCmd --
*
* This function tests, whether a method (provided as a string) is
* allowed to be redefined in a provided namespace.
*
* Results:
* Tcl result code.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int CanRedefineCmd(Tcl_Interp *interp, Tcl_Namespace *nsPtr, NsfObject *object, const char *methodName, unsigned int flags)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static int
CanRedefineCmd(Tcl_Interp *interp, Tcl_Namespace *nsPtr, NsfObject *object, const char *methodName, unsigned int flags) {
int result, ok;
Tcl_Command cmd;
assert(interp != NULL);
assert(nsPtr != NULL);
assert(object != NULL);
assert(methodName != NULL);
cmd = FindMethod(nsPtr, methodName);
if (cmd != NULL) {
if ( NsfGetObjectFromCmdPtr(cmd) != NULL) {
/*
* Don't allow overwriting of an object with an method.
*/
return NsfPrintError(interp,
"refuse to overwrite child object with method %s; delete/rename it before overwriting",
methodName);
}
ok = (Tcl_Command_flags(cmd) & NSF_CMD_REDEFINE_PROTECTED_METHOD) == 0;
} else {
ok = 1;
}
if (ok != 0) {
result = TCL_OK;
} else {
/*
* We could test, whether we are bootstrapping the "right" object
* system, and allow only overwrites for the current bootstrap
* object system, but this seems necessary by now.
*/
Tcl_Obj *bootstrapObj = Tcl_GetVar2Ex(interp, "::nsf::bootstrap", NULL, TCL_GLOBAL_ONLY);
if (bootstrapObj == NULL) {
result = NsfPrintError(interp, "refuse to overwrite protected method '%s'; "
"derive e.g. a sub-class!", methodName, ObjectName(object));
} else {
result = TCL_OK;
}
}
if (likely(result == TCL_OK)) {
result = ObjectSystemsCheckSystemMethod(interp, methodName, object, flags);
}
return result;
}
/*
*----------------------------------------------------------------------
* NsfAddObjectMethod --
*
* Externally callable function to register an object level method
* for the provided object.
*
* Results:
* Tcl result code.
*
* Side effects:
* Newly created Tcl command.
*
*----------------------------------------------------------------------
*/
int NsfAddObjectMethod(Tcl_Interp *interp, Nsf_Object *object1, const char *methodName,
Tcl_ObjCmdProc *proc, ClientData clientData, Tcl_CmdDeleteProc *dp,
unsigned int flags) nonnull(1) nonnull(2) nonnull(3) nonnull(4);
int
NsfAddObjectMethod(Tcl_Interp *interp, Nsf_Object *object1, const char *methodName,
Tcl_ObjCmdProc *proc, ClientData clientData, Tcl_CmdDeleteProc *dp,
unsigned int flags) {
NsfObject *object;
Tcl_DString newCmdName, *dsPtr = &newCmdName;
Tcl_Namespace *ns;
Tcl_Command newCmd;
int result;
assert(interp != NULL);
assert(object1 != NULL);
assert(methodName != NULL);
assert(proc != NULL);
object = (NsfObject *)object1;
ns = RequireObjNamespace(interp, object);
/* Check, if we are allowed to redefine the method */
result = CanRedefineCmd(interp, object->nsPtr, object, (char *)methodName, flags);
if (unlikely(result != TCL_OK)) {
return result;
}
NsfObjectMethodEpochIncr("NsfAddObjectMethod");
/* delete an alias definition, if it exists */
AliasDelete(interp, object->cmdName, methodName, 1);
Tcl_DStringInit(dsPtr);
DStringAppendQualName(dsPtr, ns, methodName);
newCmd = Tcl_CreateObjCommand(interp, Tcl_DStringValue(dsPtr), proc, clientData, dp);
if (flags != 0) {
((Command *) newCmd)->flags |= flags;
}
Tcl_DStringFree(dsPtr);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* NsfAddClassMethod --
*
* Externally callable function to register an class level method
* for the provided class.
*
* Results:
* Tcl result code.
*
* Side effects:
* Newly created Tcl command.
*
*----------------------------------------------------------------------
*/
int NsfAddClassMethod(Tcl_Interp *interp, Nsf_Class *class, const char *methodName,
Tcl_ObjCmdProc *proc, ClientData clientData, Tcl_CmdDeleteProc *dp,
unsigned int flags)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
int
NsfAddClassMethod(Tcl_Interp *interp, Nsf_Class *class, const char *methodName,
Tcl_ObjCmdProc *proc, ClientData clientData, Tcl_CmdDeleteProc *dp,
unsigned int flags) {
Tcl_DString newCmdName, *dsPtr = &newCmdName;
Tcl_Command newCmd;
NsfClass *cl;
int result;
assert(interp != NULL);
assert(class != NULL);
assert(methodName != NULL);
assert(proc != NULL);
cl = (NsfClass *)class;
assert(cl->nsPtr != NULL);
/* Check, if we are allowed to redefine the method */
result = CanRedefineCmd(interp, cl->nsPtr, &cl->object, (char *)methodName, flags);
if (unlikely(result != TCL_OK)) {
return result;
}
NsfInstanceMethodEpochIncr("NsfAddClassMethod");
/* delete an alias definition, if it exists */
AliasDelete(interp, class->object.cmdName, methodName, 0);
Tcl_DStringInit(dsPtr);
DStringAppendQualName(dsPtr, cl->nsPtr, methodName);
newCmd = Tcl_CreateObjCommand(interp, Tcl_DStringValue(dsPtr), proc, clientData, dp);
if (flags != 0) {
((Command *) newCmd)->flags |= flags;
}
Tcl_DStringFree(dsPtr);
return TCL_OK;
}
/*
* Auto-naming
*/
static Tcl_Obj * AutonameIncr(Tcl_Interp *interp, Tcl_Obj *nameObj, NsfObject *object,
int instanceOpt, int resetOpt) nonnull(1) nonnull(2) nonnull(3);
static Tcl_Obj *
AutonameIncr(Tcl_Interp *interp, Tcl_Obj *nameObj, NsfObject *object,
int isInstanceOpt, int doResetOpt) {
Tcl_Obj *valueObj, *resultObj = NULL;
CallFrame frame, *framePtr = &frame;
int flogs = TCL_LEAVE_ERR_MSG;
assert(interp != NULL);
assert(nameObj != NULL);
assert(object != NULL);
Nsf_PushFrameObj(interp, object, framePtr);
if (object->nsPtr != NULL) {
flogs |= TCL_NAMESPACE_ONLY;
}
valueObj = Tcl_ObjGetVar2(interp, NsfGlobalObjs[NSF_AUTONAMES], nameObj, flogs);
if (valueObj != NULL) {
long autoname_counter;
/* should probably do an overflow check here */
Tcl_GetLongFromObj(interp, valueObj, &autoname_counter);
autoname_counter++;
if (Tcl_IsShared(valueObj)) {
valueObj = Tcl_DuplicateObj(valueObj);
}
Tcl_SetLongObj(valueObj, autoname_counter);
Tcl_ObjSetVar2(interp, NsfGlobalObjs[NSF_AUTONAMES], nameObj,
valueObj, flogs);
}
if (doResetOpt == 1) {
if (valueObj != NULL) { /* we have an entry */
Tcl_UnsetVar2(interp, NsfGlobalStrings[NSF_AUTONAMES], ObjStr(nameObj), flogs);
}
resultObj = NsfGlobalObjs[NSF_EMPTY];
INCR_REF_COUNT2("autoname", resultObj);
} else {
int mustCopy = 1, format = 0;
const char *c;
if (valueObj == NULL) {
valueObj = Tcl_ObjSetVar2(interp, NsfGlobalObjs[NSF_AUTONAMES],
nameObj, NsfGlobalObjs[NSF_ONE], flogs);
}
if (isInstanceOpt == 1) {
char firstChar;
const char *nextChars = ObjStr(nameObj);
firstChar = *(nextChars ++);
if (isupper((int)firstChar)) {
char buffer[1];
buffer[0] = tolower((int)firstChar);
resultObj = Tcl_NewStringObj(buffer, 1);
INCR_REF_COUNT2("autoname", resultObj);
Tcl_AppendLimitedToObj(resultObj, nextChars, -1, INT_MAX, NULL);
mustCopy = 0;
}
}
if (mustCopy == 1) {
resultObj = Tcl_DuplicateObj(nameObj);
INCR_REF_COUNT2("autoname", resultObj);
/*
fprintf(stderr, "*** copy %p %s = %p\n", name, ObjStr(name), resultObj);
*/
}
/* if we find a % in the autoname -> We use Tcl_FormatObjCmd
to let the autoname string be formated, like Tcl "format"
command, with the value. E.g.:
autoname a%06d --> a000000, a000001, a000002, ...
*/
for (c = ObjStr(resultObj); *c != '\0'; c++) {
if (*c == '%') {
if (*(c+1) != '%') {
format = 1;
break;
} else {
/* when we find a %% we format and then append autoname, e.g.
autoname a%% --> a%1, a%2, ... */
c++;
}
}
}
if (format == 1) {
Tcl_Obj *savedResultObj;
ALLOC_ON_STACK(Tcl_Obj*, 3, ov);
savedResultObj = Tcl_GetObjResult(interp);
INCR_REF_COUNT(savedResultObj);
ov[1] = resultObj;
ov[2] = valueObj;
if (NsfCallCommand(interp, NSF_FORMAT, 3, ov) != TCL_OK) {
Nsf_PopFrameObj(interp, framePtr);
DECR_REF_COUNT(savedResultObj);
FREE_ON_STACK(Tcl_Obj*, ov);
return NULL;
}
DECR_REF_COUNT(resultObj);
resultObj = Tcl_DuplicateObj(Tcl_GetObjResult(interp));
INCR_REF_COUNT2("autoname", resultObj);
Tcl_SetObjResult(interp, savedResultObj);
DECR_REF_COUNT(savedResultObj);
FREE_ON_STACK(Tcl_Obj*, ov);
} else {
const char *valueString = Tcl_GetString(valueObj);
Tcl_AppendLimitedToObj(resultObj, valueString, valueObj->length, INT_MAX, NULL);
/*fprintf(stderr, "+++ append to obj done\n");*/
}
}
Nsf_PopFrameObj(interp, framePtr);
assert((doResetOpt == 1 && resultObj->refCount>=1) || (resultObj->refCount == 1));
return resultObj;
}
/*
* Next Scripting CallStack functions
*/
NSF_INLINE static void CallStackDoDestroy(Tcl_Interp *interp, NsfObject *object) nonnull(1) nonnull(2);
NSF_INLINE static void
CallStackDoDestroy(Tcl_Interp *interp, NsfObject *object) {
Tcl_Command oid;
assert(interp != NULL);
assert(object != NULL);
/*fprintf(stderr, "CallStackDoDestroy %p flags %.6x\n", object, object->flags);*/
PRINTOBJ("CallStackDoDestroy", object);
/*
* Don't do anything, if a recursive DURING_DELETE is for some
* reason active.
*/
if (object->flags & NSF_DURING_DELETE) {
return;
}
/*fprintf(stderr, "CallStackDoDestroy %p flags %.6x activation %d object->refCount %d cmd %p \n",
object, object->flags, object->activationCount, object->refCount, object->id);*/
object->flags |= NSF_DURING_DELETE;
oid = object->id;
/* oid might be freed already, we can't even use (((Command *)oid)->flags & CMD_IS_DELETED) */
if (object->teardown && oid) {
/*
* PrimitiveDestroy() has to be before DeleteCommandFromToken(),
* otherwise e.g. unset traces on this object cannot be executed
* from Tcl. We make sure via refCounting that the object
* structure is kept until after DeleteCommandFromToken().
*/
NsfObjectRefCountIncr(object);
PrimitiveDestroy(object);
if /*(object->teardown == NULL)*/ ((object->flags & NSF_TCL_DELETE) == 0) {
Tcl_Obj *savedResultObj = Tcl_GetObjResult(interp);
INCR_REF_COUNT(savedResultObj);
assert(object->teardown == NULL);
/*fprintf(stderr, " before DeleteCommandFromToken %p object flags %.6x\n", oid, object->flags);*/
/*fprintf(stderr, "cmd dealloc %p refCount %d dodestroy \n", oid, Tcl_Command_refCount(oid));*/
Tcl_DeleteCommandFromToken(interp, oid); /* this can change the result */
/*fprintf(stderr, " after DeleteCommandFromToken %p %.6x\n", oid, ((Command *)oid)->flags);*/
Tcl_SetObjResult(interp, savedResultObj);
DECR_REF_COUNT(savedResultObj);
}
NsfCleanupObject(object, "CallStackDoDestroy");
}
}
static void
CallStackDestroyObject(Tcl_Interp *interp, NsfObject *object) {
assert(interp != NULL);
assert(object != NULL);
#ifdef OBJDELETION_TRACE
fprintf(stderr, "CallStackDestroyObject %p %s activationcount %d flags %.6x\n",
object, ObjectName(object), object->activationCount, object->flags);
#endif
if ((object->flags & NSF_DESTROY_CALLED) == 0) {
int activationCount = object->activationCount;
/* if the destroy method was not called yet, do it now */
#ifdef OBJDELETION_TRACE
fprintf(stderr, " CallStackDestroyObject has to DispatchDestroyMethod %p activationCount %d\n",
object, activationCount);
#endif
DispatchDestroyMethod(interp, object, 0);
if (activationCount == 0) {
/*
* We assume, the object is now freed. If the object is already
* freed, we cannot access activation count, and we cannot call
* CallStackDoDestroy.
*/
/*fprintf(stderr, " CallStackDestroyObject %p done\n", obj);*/
return;
}
}
/*
* If the object is not referenced on the call-stack anymore
* we have to destroy it directly, because CscFinish won't
* find the object destroy.
*/
if (object->activationCount == 0) {
CallStackDoDestroy(interp, object);
} else {
/*
* To prevail the deletion order call delete children now -> children
* destructors are called before parent's destructor.
*/
if (object->teardown && object->nsPtr) {
/*fprintf(stderr, " CallStackDestroyObject calls NSDeleteChildren\n");*/
NSDeleteChildren(interp, object->nsPtr);
}
}
/*fprintf(stderr, " CallStackDestroyObject %p DONE\n", object);*/
}
/*
* cmd list handling
*/
/*
*----------------------------------------------------------------------
* CmdListAdd --
*
* Add an entry to a cmdlist. Optionally, the function checks for
* duplicates (does not insert a duplicate) or it allows to add to the end
* of the list.
*
* Results:
* The newly inserted command list item or a found item (never null)
*
* Side effects:
* Added List entry.
*
*----------------------------------------------------------------------
*/
static NsfCmdList *CmdListAdd(NsfCmdList **cList, Tcl_Command c, NsfClass *clorobj, int noDuplicates, int atEnd)
nonnull(1) nonnull(2) returns_nonnull;
static NsfCmdList *
CmdListAdd(NsfCmdList **cList, Tcl_Command cmd, NsfClass *clorobj, int noDuplicates, int atEnd) {
NsfCmdList *l, *nextPtr, *new;
assert(cmd != NULL);
assert(cList != NULL);
if (unlikely(atEnd)) {
l = *cList;
nextPtr = NULL;
} else {
l = NULL;
nextPtr = *cList;
}
/*
* check for duplicates, if necessary
*/
if (unlikely(noDuplicates)) {
NsfCmdList *h = l, **end = NULL;
while (h) {
if (h->cmdPtr == cmd) {
return h;
}
end = &(h->nextPtr);
h = h->nextPtr;
}
if (end != NULL) {
/* no duplicates, no need to search below, we are at the end of the list */
cList = end;
l = NULL;
}
}
/*
* ok, we have no duplicates -> append "new"
* to the end of the list
*/
new = NEW(NsfCmdList);
new->cmdPtr = cmd;
NsfCommandPreserve(new->cmdPtr);
new->clientData = NULL;
new->clorobj = clorobj;
new->nextPtr = nextPtr;
if (unlikely(l != NULL)) {
/*
* append new element at the end
*/
while (l->nextPtr) {
l = l->nextPtr;
}
l->nextPtr = new;
} else {
/*
* prepend new element
*/
*cList = new;
}
return new;
}
/*
*----------------------------------------------------------------------
* CmdListAddSorted --
*
* Add an entry to a cmdlist without duplicates. The order of the entries
* is not supposed to be relevant. This function maintains a sorted list to
* reduce cost to n/2. Can be improved be using better data structures of
* needed.
*
* Results:
* The newly inserted command list item or a found item
*
* Side effects:
* Added List entry.
*
*----------------------------------------------------------------------
*/
static NsfCmdList *CmdListAddSorted(NsfCmdList **cList, Tcl_Command c, NsfClass *clorobj)
nonnull(1) nonnull(2) returns_nonnull;
static NsfCmdList *
CmdListAddSorted(NsfCmdList **cList, Tcl_Command cmd, NsfClass *clorobj) {
NsfCmdList *prev, *new, *h;
assert(cmd != NULL);
assert(cList != NULL);
for (h = *cList, prev = NULL; h; prev = h, h = h->nextPtr) {
if (h->cmdPtr == cmd) {
return h;
} else if (h->cmdPtr > cmd) {
break;
}
}
new = NEW(NsfCmdList);
new->cmdPtr = cmd;
NsfCommandPreserve(new->cmdPtr);
new->clientData = NULL;
new->clorobj = clorobj;
new->nextPtr = h;
if (prev != NULL) {
prev->nextPtr = new;
} else {
*cList = new;
}
return new;
}
static void CmdListReplaceCmd(NsfCmdList *replace, Tcl_Command cmd, NsfClass *clorobj)
nonnull(1) nonnull(3);
static void
CmdListReplaceCmd(NsfCmdList *replace, Tcl_Command cmd, NsfClass *clorobj) {
Tcl_Command del;
assert(replace != NULL);
assert(clorobj != NULL);
del = replace->cmdPtr;
replace->cmdPtr = cmd;
replace->clorobj = clorobj;
NsfCommandPreserve(cmd);
NsfCommandRelease(del);
}
#if NSF_DEBUGGING
/** for debug purposes only */
static void CmdListPrint(Tcl_Interp *interp, const char *title, NsfCmdList *cmdList)
nonnull(1) nonnull(3);
static void
CmdListPrint(Tcl_Interp *interp, const char *title, NsfCmdList *cmdList) {
assert(interp != NULL);
assert(cmdList != NULL);
if (title != NULL) {
fprintf(stderr, "%s %p:\n", title, cmdList);
}
while (cmdList) {
fprintf(stderr, " CL=%p, cmdPtr=%p %s, clorobj %p, clientData=%p\n",
cmdList,
cmdList->cmdPtr, (interp != NULL) ? Tcl_GetCommandName(interp, cmdList->cmdPtr) : "",
cmdList->clorobj,
cmdList->clientData);
cmdList = cmdList->nextPtr;
}
}
#endif
/*
* physically delete an entry 'del'
*/
static void CmdListDeleteCmdListEntry(NsfCmdList *del, NsfFreeCmdListClientData *freeFct)
nonnull(1);
static void
CmdListDeleteCmdListEntry(NsfCmdList *del, NsfFreeCmdListClientData *freeFct) {
assert(del != NULL);
if (unlikely(freeFct != NULL)) {
(*freeFct)(del);
}
NsfCommandRelease(del->cmdPtr);
FREE(NsfCmdList, del);
}
/*
* remove a command 'delCL' from a command list, but do not
* free it ... returns the removed NsfCmdList*
*/
static NsfCmdList *CmdListRemoveFromList(NsfCmdList **cmdList, NsfCmdList *delCL)
nonnull(1) nonnull(2);
static NsfCmdList *
CmdListRemoveFromList(NsfCmdList **cmdList, NsfCmdList *delCL) {
register NsfCmdList *c;
NsfCmdList *del = NULL;
assert(cmdList != NULL);
assert(delCL != NULL);
c = *cmdList;
if (c == NULL) {
return NULL;
}
if (c == delCL) {
*cmdList = c->nextPtr;
del = c;
} else {
while (c->nextPtr && c->nextPtr != delCL) {
c = c->nextPtr;
}
if (c->nextPtr == delCL) {
del = delCL;
c->nextPtr = delCL->nextPtr;
}
}
return del;
}
/*
*----------------------------------------------------------------------
* CmdListRemoveDeleted --
*
* Remove all command pointers from a command list which are marked
* "deleted". The condition for deletion is the presence of the flag
* CMD_IS_DELETED, with the flag bit being set by
* Tcl_DeleteCommandFromToken().
*
* Results:
* The cmd list filtered for non-deleted commands
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static void CmdListRemoveDeleted(NsfCmdList **cmdList, NsfFreeCmdListClientData *freeFct) nonnull(1) nonnull(2);
static void
CmdListRemoveDeleted(NsfCmdList **cmdList, NsfFreeCmdListClientData *freeFct) {
NsfCmdList *f, *del;
assert(cmdList != NULL);
assert(freeFct != NULL);
f = *cmdList;
while (f) {
/*
* HIDDEN OBJECTS: For supporting hidden mixins, we cannot rely on the
* cmdEpoch as indicator of the deletion status of a cmd because the epoch
* counters of hidden and re-exposed commands are bumped. Despite of this,
* their object structures remain valid. We resort to the use of the
* per-cmd flag CMD_IS_DELETED, set upon processing a command in
* Tcl_DeleteCommandFromToken().
*/
if (Tcl_Command_flags(f->cmdPtr) & CMD_IS_DELETED /* Tcl_Command_cmdEpoch(f->cmdPtr) */) {
del = f;
f = f->nextPtr;
del = CmdListRemoveFromList(cmdList, del);
CmdListDeleteCmdListEntry(del, freeFct);
} else
f = f->nextPtr;
}
}
/*
* delete all cmds with given context class object
*/
static void CmdListRemoveContextClassFromList(NsfCmdList **cmdList, NsfClass *clorobj,
NsfFreeCmdListClientData *freeFct) nonnull(1) nonnull(2) nonnull(3);
static void
CmdListRemoveContextClassFromList(NsfCmdList **cmdList, NsfClass *clorobj,
NsfFreeCmdListClientData *freeFct) {
NsfCmdList *c, *del = NULL;
assert(cmdList != NULL);
assert(clorobj != NULL);
assert(freeFct != NULL);
/*
CmdListRemoveDeleted(cmdList, freeFct);
*/
c = *cmdList;
while (c && c->clorobj == clorobj) {
del = c;
*cmdList = c->nextPtr;
CmdListDeleteCmdListEntry(del, freeFct);
c = *cmdList;
}
while (c) {
if (c->clorobj == clorobj) {
del = c;
c = *cmdList;
while (c->nextPtr && c->nextPtr != del) {
c = c->nextPtr;
}
if (c->nextPtr == del) {
c->nextPtr = del->nextPtr;
}
CmdListDeleteCmdListEntry(del, freeFct);
}
c = c->nextPtr;
}
}
/*
* free the memory of a whole 'cmdList'
*/
static void
CmdListFree(NsfCmdList **cmdList, NsfFreeCmdListClientData *freeFct) {
assert(cmdList != NULL);
while (*cmdList) {
NsfCmdList *del = *cmdList;
*cmdList = (*cmdList)->nextPtr;
CmdListDeleteCmdListEntry(del, freeFct);
}
}
/*
* simple list search proc to search a list of cmds
* for a command ptr
*/
static NsfCmdList * CmdListFindCmdInList(Tcl_Command cmd, NsfCmdList *l) nonnull(2) nonnull(1);
static NsfCmdList *
CmdListFindCmdInList(Tcl_Command cmd, NsfCmdList *l) {
register NsfCmdList *h;
assert(cmd != NULL);
assert(l);
for (h = l; h; h = h->nextPtr) {
if (h->cmdPtr == cmd) return h;
}
return NULL;
}
/*
* simple list search proc to search a list of cmds
* for a simple Name
*/
static NsfCmdList * CmdListFindNameInList(Tcl_Interp *interp, const char *name, NsfCmdList *l)
nonnull(1) nonnull(2) nonnull(3);
static NsfCmdList *
CmdListFindNameInList(Tcl_Interp *interp, const char *name, NsfCmdList *cmdList) {
assert(interp != NULL);
assert(name != NULL);
assert(cmdList != NULL);
do {
const char *cmdName = Tcl_GetCommandName(interp, cmdList->cmdPtr);
if (cmdName[0] == name[0] && strcmp(cmdName, name) == 0) {
return cmdList;
}
cmdList = cmdList->nextPtr;
} while (cmdList != NULL);
return NULL;
}
/*
*----------------------------------------------------------------------
* CheckConditionInScope --
*
* Check a given condition in the current call-frame's scope. It is
* the responsibility of the caller to push the intended call-frame.
*
* Results:
* Tcl result code.
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static int CheckConditionInScope(Tcl_Interp *interp, Tcl_Obj *condition) nonnull(1) nonnull(2);
static int
CheckConditionInScope(Tcl_Interp *interp, Tcl_Obj *condition) {
int result, success;
Tcl_Obj *ov[2] = {NULL, condition};
assert(interp != NULL);
assert(condition != NULL);
INCR_REF_COUNT(condition);
result = Nsf_ExprObjCmd(NULL, interp, 2, ov);
DECR_REF_COUNT(condition);
if (likely(result == TCL_OK)) {
result = Tcl_GetBooleanFromObj(interp, Tcl_GetObjResult(interp), &success);
if (result == TCL_OK && success == 0) {
result = NSF_CHECK_FAILED;
}
}
return result;
}
/*
* Generic Obj-List handling functions.
*/
/*
*----------------------------------------------------------------------
* TclObjListFreeList --
*
* Free the elements of the obj list.
*
* Results:
* None.
*
* Side effects:
* free memory.
*
*----------------------------------------------------------------------
*/
static void TclObjListFreeList(NsfTclObjList *list) nonnull(1);
static void
TclObjListFreeList(NsfTclObjList *list) {
assert(list != NULL);
do {
NsfTclObjList *del = list;
list = list->nextPtr;
DECR_REF_COUNT2("listContent", del->content);
if (del->payload != NULL) {
DECR_REF_COUNT2("listPayload", del->payload);
}
FREE(NsfTclObjList, del);
} while (list != NULL);
}
/*
*----------------------------------------------------------------------
* TclObjListNewElement --
*
* Add a new element to the obj list with an optional value (stored in
* payload).
*
* Results:
* None.
*
* Side effects:
* allocate memory.
*
*----------------------------------------------------------------------
*/
static Tcl_Obj * TclObjListNewElement(NsfTclObjList **list, Tcl_Obj *obj, Tcl_Obj *value)
nonnull(1) nonnull(2) returns_nonnull;
static Tcl_Obj *
TclObjListNewElement(NsfTclObjList **list, Tcl_Obj *obj, Tcl_Obj *valueObj) {
NsfTclObjList *elt = NEW(NsfTclObjList);
assert(list != NULL);
assert(obj != NULL);
INCR_REF_COUNT2("listContent", obj);
elt->content = obj;
elt->payload = valueObj;
if (valueObj != NULL) {
INCR_REF_COUNT2("listPayload", valueObj);
}
elt->nextPtr = *list;
*list = elt;
return obj;
}
/*
*----------------------------------------------------------------------
* TclObjListAdd --
*
* Add a NsfTclObjList element to the obj list indexed by a key into a
* sorted list of elements. Duplicates are appended to the payload
* elements.
*
* Results:
* None.
*
* Side effects:
* Add element to the obj-list.
*
*----------------------------------------------------------------------
*/
static void TclObjListAdd(Tcl_Interp *interp, NsfTclObjList **list, Tcl_Obj *key, Tcl_Obj *value)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static void
TclObjListAdd(Tcl_Interp *interp, NsfTclObjList **list, Tcl_Obj *key, Tcl_Obj *value) {
NsfTclObjList *elt, **prevPtr;
const char *keyString = ObjStr(key);
assert(interp != NULL);
assert(list != NULL);
assert(key != NULL);
assert(value != NULL);
for (elt = *list, prevPtr = list; elt; prevPtr = &elt->nextPtr, elt = elt->nextPtr) {
const char *eltString = ObjStr(elt->content);
if (key == elt->content || strcmp(keyString, eltString) == 0) {
/*
* Found the element, append to it
*/
/* fprintf(stderr, "TclObjListAdd: insert %s/%s equal, append to %s\n",
keyString, ObjStr(value), ObjStr(elt->payload));*/
Tcl_ListObjAppendElement(interp, elt->payload, value);
return;
}
if (strcmp(keyString, eltString) < 0) {
/*
* Element not found, insert new before as a new entry.
*/
/*fprintf(stderr, "TclObjListAdd: insert %s/%s before %s isshared %d\n",
keyString, ObjStr(value), eltString, Tcl_IsShared(key));*/
TclObjListNewElement(prevPtr, key, Tcl_IsShared(value) ? Tcl_DuplicateObj(value) : value);
return;
}
}
/*
* Element not found, insert new as last entry.
*/
/* fprintf(stderr, "TclObjListAdd: insert last %s value %s\n", keyString, ObjStr(value)); */
TclObjListNewElement(prevPtr, key, Tcl_NewListObj(1, &value));
return;
}
#if defined(NSF_WITH_ASSERTIONS)
/*********************************************************************
* Assertions
**********************************************************************/
static NsfTclObjList * AssertionNewList(Tcl_Interp *interp, Tcl_Obj *aObj) nonnull(1);
static NsfTclObjList *
AssertionNewList(Tcl_Interp *interp, Tcl_Obj *aObj) {
Tcl_Obj **ov; int oc;
NsfTclObjList *last = NULL;
assert(interp != NULL);
if (aObj && Tcl_ListObjGetElements(interp, aObj, &oc, &ov) == TCL_OK) {
if (oc > 0) {
int i;
for (i = oc - 1; i >= 0; i--) {
TclObjListNewElement(&last, ov[i], NULL);
}
}
}
return last;
}
static Tcl_Obj * AssertionList(Tcl_Interp *interp, NsfTclObjList *alist) nonnull(1);
static Tcl_Obj *
AssertionList(Tcl_Interp *interp, NsfTclObjList *alist) {
Tcl_Obj *listObj = Tcl_NewListObj(0, NULL);
assert(interp != NULL);
for (; alist; alist = alist->nextPtr) {
Tcl_ListObjAppendElement(interp, listObj, alist->content);
}
return listObj;
}
static int AssertionListCheckOption(Tcl_Interp *interp, NsfObject *object) nonnull(1) nonnull(2);
static int
AssertionListCheckOption(Tcl_Interp *interp, NsfObject *object) {
NsfObjectOpt *opt = object->opt;
Tcl_Obj *resultObj;
assert(interp != NULL);
assert(object != NULL);
if (opt == 0) return TCL_OK;
resultObj = Tcl_GetObjResult(interp);
if (opt->checkoptions & CHECK_OBJINVAR)
Tcl_ListObjAppendElement(interp, resultObj, Tcl_NewStringObj("object-invar", -1));
if (opt->checkoptions & CHECK_CLINVAR)
Tcl_ListObjAppendElement(interp, resultObj, Tcl_NewStringObj("class-invar", -1));
if (opt->checkoptions & CHECK_PRE)
Tcl_ListObjAppendElement(interp, resultObj, Tcl_NewStringObj("pre", -1));
if (opt->checkoptions & CHECK_POST)
Tcl_ListObjAppendElement(interp, resultObj, Tcl_NewStringObj("post", -1));
return TCL_OK;
}
static NsfProcAssertion *AssertionFindProcs(NsfAssertionStore *aStore, const char *name)
nonnull(1) nonnull(2);
static NsfProcAssertion *
AssertionFindProcs(NsfAssertionStore *aStore, const char *name) {
Tcl_HashEntry *hPtr;
assert(aStore != NULL);
assert(name != NULL);
hPtr = Tcl_CreateHashEntry(&aStore->procs, name, NULL);
if (hPtr == NULL) return NULL;
return (NsfProcAssertion *) Tcl_GetHashValue(hPtr);
}
static void AssertionRemoveProc(NsfAssertionStore *aStore, const char *name) nonnull(1) nonnull(2);
static void
AssertionRemoveProc(NsfAssertionStore *aStore, const char *name) {
Tcl_HashEntry *hPtr;
assert(aStore != NULL);
assert(name != NULL);
hPtr = Tcl_CreateHashEntry(&aStore->procs, name, NULL);
if (hPtr != NULL) {
NsfProcAssertion *procAss = (NsfProcAssertion *) Tcl_GetHashValue(hPtr);
if (procAss->pre != NULL) TclObjListFreeList(procAss->pre);
if (procAss->post != NULL) TclObjListFreeList(procAss->post);
FREE(NsfProcAssertion, procAss);
Tcl_DeleteHashEntry(hPtr);
}
}
static void AssertionAddProc(Tcl_Interp *interp, const char *name, NsfAssertionStore *aStore,
Tcl_Obj *pre, Tcl_Obj *post) nonnull(1) nonnull(2) nonnull(3);
static void
AssertionAddProc(Tcl_Interp *interp, const char *name, NsfAssertionStore *aStore,
Tcl_Obj *pre, Tcl_Obj *post) {
int new = 0;
Tcl_HashEntry *hPtr = NULL;
NsfProcAssertion *procs = NEW(NsfProcAssertion);
assert(interp != NULL);
assert(name != NULL);
assert(aStore != NULL);
AssertionRemoveProc(aStore, name);
procs->pre = AssertionNewList(interp, pre);
procs->post = AssertionNewList(interp, post);
hPtr = Tcl_CreateHashEntry(&aStore->procs, name, &new);
if (new != 0) {
Tcl_SetHashValue(hPtr, procs);
}
}
static NsfAssertionStore *AssertionCreateStore() returns_nonnull;
static NsfAssertionStore *
AssertionCreateStore() {
NsfAssertionStore *aStore = NEW(NsfAssertionStore);
aStore->invariants = NULL;
Tcl_InitHashTable(&aStore->procs, TCL_STRING_KEYS);
MEM_COUNT_ALLOC("Tcl_InitHashTable", &aStore->procs);
return aStore;
}
static void AssertionRemoveStore(NsfAssertionStore *aStore) nonnull(1);
static void
AssertionRemoveStore(NsfAssertionStore *aStore) {
Tcl_HashSearch hSrch;
Tcl_HashEntry *hPtr;
assert(aStore != NULL);
for (hPtr = Tcl_FirstHashEntry(&aStore->procs, &hSrch); hPtr;
hPtr = Tcl_FirstHashEntry(&aStore->procs, &hSrch)) {
/*
* AssertionRemoveProc calls Tcl_DeleteHashEntry(hPtr), thus
* we get the FirstHashEntry afterwards again to proceed
*/
AssertionRemoveProc(aStore, Tcl_GetHashKey(&aStore->procs, hPtr));
}
Tcl_DeleteHashTable(&aStore->procs);
MEM_COUNT_FREE("Tcl_InitHashTable", &aStore->procs);
if (aStore->invariants != NULL) TclObjListFreeList(aStore->invariants);
FREE(NsfAssertionStore, aStore);
}
static int AssertionCheckList(Tcl_Interp *interp, NsfObject *object,
NsfTclObjList *alist, const char *methodName)
nonnull(1) nonnull(2) nonnull(4);
static int
AssertionCheckList(Tcl_Interp *interp, NsfObject *object,
NsfTclObjList *alist, const char *methodName) {
NsfTclObjList *checkFailed = NULL;
Tcl_Obj *savedResultObj = Tcl_GetObjResult(interp);
int savedCheckoptions, acResult = TCL_OK;
assert(interp != NULL);
assert(object != NULL);
assert(methodName != NULL);
/*
* no obj->opt -> checkoption == CHECK_NONE
*/
if (object->opt == NULL) {
return TCL_OK;
}
/* we do not check assertion modifying methods, otherwise
we cannot react in catch on a runtime assertion check failure */
#if 1
/* TODO: the following check operations is XOTcl1 legacy and is not
generic. it should be replaced by another method-property.
Most of the is*String()
definition are then obsolete and should be deleted from
nsfInt.h as well.
*/
if (isCheckString(methodName)) {
return TCL_OK;
}
#endif
INCR_REF_COUNT(savedResultObj);
Tcl_ResetResult(interp);
while (alist) {
/* Eval instead of IfObjCmd => the substitutions in the
conditions will be done by Tcl */
const char *assStr = ObjStr(alist->content), *c = assStr;
int comment = 0;
for (; c && *c != '\0'; c++) {
if (*c == '#') {
comment = 1; break;
}
}
if (comment == 0) {
CallFrame frame, *framePtr = &frame;
Nsf_PushFrameObj(interp, object, framePtr);
/* don't check assertion during assertion check */
savedCheckoptions = object->opt->checkoptions;
object->opt->checkoptions = CHECK_NONE;
/* fprintf(stderr, "Checking Assertion %s ", assStr); */
/*
* now check the assertion in the pushed call-frame's scope
*/
acResult = CheckConditionInScope(interp, alist->content);
if (acResult != TCL_OK) {
checkFailed = alist;
}
object->opt->checkoptions = savedCheckoptions;
/* fprintf(stderr, "...%s\n", (checkFailed != 0) ? "failed" : "ok"); */
Nsf_PopFrameObj(interp, framePtr);
}
if (checkFailed != 0) {
break;
}
alist = alist->nextPtr;
}
if (checkFailed != 0) {
DECR_REF_COUNT(savedResultObj);
if (acResult == TCL_ERROR) {
Tcl_Obj *sr = Tcl_GetObjResult(interp);
INCR_REF_COUNT(sr);
NsfPrintError(interp, "error in Assertion: {%s} in proc '%s'\n%s",
ObjStr(checkFailed->content), methodName, ObjStr(sr));
DECR_REF_COUNT(sr);
return TCL_ERROR;
}
return NsfPrintError(interp, "assertion failed check: {%s} in proc '%s'",
ObjStr(checkFailed->content), methodName);
}
Tcl_SetObjResult(interp, savedResultObj);
DECR_REF_COUNT(savedResultObj);
return TCL_OK;
}
static int AssertionCheckInvars(Tcl_Interp *interp, NsfObject *object,
const char *methodName,
CheckOptions checkoptions)
nonnull(1) nonnull(2) nonnull(3);
static int
AssertionCheckInvars(Tcl_Interp *interp, NsfObject *object,
const char *methodName,
CheckOptions checkoptions) {
int result = TCL_OK;
assert(interp != NULL);
assert(object != NULL);
assert(methodName != NULL);
if (checkoptions & CHECK_OBJINVAR && object->opt->assertions) {
result = AssertionCheckList(interp, object, object->opt->assertions->invariants,
methodName);
}
if (result != TCL_ERROR && checkoptions & CHECK_CLINVAR) {
NsfClasses *clPtr;
clPtr = PrecedenceOrder(object->cl);
while (clPtr && result != TCL_ERROR) {
NsfAssertionStore *aStore = (clPtr->cl->opt) ? clPtr->cl->opt->assertions : NULL;
if (aStore != NULL) {
result = AssertionCheckList(interp, object, aStore->invariants, methodName);
}
clPtr = clPtr->nextPtr;
}
}
return result;
}
static int AssertionCheck(Tcl_Interp *interp, NsfObject *object, NsfClass *cl,
const char *method, int checkOption)
nonnull(1) nonnull(2) nonnull(4);
static int
AssertionCheck(Tcl_Interp *interp, NsfObject *object, NsfClass *cl,
const char *method, int checkOption) {
int result = TCL_OK;
NsfAssertionStore *aStore;
assert(interp != NULL);
assert(object != NULL);
assert(method != NULL);
assert(object->opt);
if (cl != NULL) {
aStore = (cl->opt != NULL) ? cl->opt->assertions : NULL;
} else {
aStore = (object->opt != NULL) ? object->opt->assertions : NULL;
}
if (aStore && (checkOption & object->opt->checkoptions)) {
NsfProcAssertion *procs = AssertionFindProcs(aStore, method);
if (procs != NULL) {
switch (checkOption) {
case CHECK_PRE:
result = AssertionCheckList(interp, object, procs->pre, method);
break;
case CHECK_POST:
result = AssertionCheckList(interp, object, procs->post, method);
break;
}
}
if (result != TCL_ERROR) {
result = AssertionCheckInvars(interp, object, method, object->opt->checkoptions);
}
}
return result;
}
static int AssertionSetCheckOptions(Tcl_Interp *interp, NsfObject *object, Tcl_Obj *arg)
nonnull(1) nonnull(2) nonnull(3);
static int
AssertionSetCheckOptions(Tcl_Interp *interp, NsfObject *object, Tcl_Obj *arg) {
NsfObjectOpt *opt = NsfRequireObjectOpt(object);
int ocArgs;
Tcl_Obj **ovArgs;
assert(interp != NULL);
assert(object != NULL);
assert(arg != NULL);
opt->checkoptions = CHECK_NONE;
if (Tcl_ListObjGetElements(interp, arg, &ocArgs, &ovArgs) == TCL_OK
&& ocArgs > 0) {
int i;
for (i = 0; i < ocArgs; i++) {
const char *option = ObjStr(ovArgs[i]);
if (option != NULL) {
switch (*option) {
case 'c':
if (strcmp(option, "class-invar") == 0) {
opt->checkoptions |= CHECK_CLINVAR;
}
break;
case 'o':
if (strcmp(option, "object-invar") == 0) {
opt->checkoptions |= CHECK_OBJINVAR;
}
break;
case 'p':
if (strcmp(option, "pre") == 0) {
opt->checkoptions |= CHECK_PRE;
} else if (strcmp(option, "post") == 0) {
opt->checkoptions |= CHECK_POST;
}
break;
case 'a':
if (strcmp(option, "all") == 0) {
opt->checkoptions |= CHECK_ALL;
}
break;
}
}
}
}
if (opt->checkoptions == CHECK_NONE && ocArgs > 0) {
return NsfPrintError(interp, "unknown check option in command '%s' check %s, ",
"valid: all pre post object-invar class-invar",
ObjectName(object), ObjStr(arg));
}
return TCL_OK;
}
static void AssertionSetInvariants(Tcl_Interp *interp, NsfAssertionStore **assertions, Tcl_Obj *arg)
nonnull(1) nonnull(2) nonnull(3);
static void
AssertionSetInvariants(Tcl_Interp *interp, NsfAssertionStore **assertions, Tcl_Obj *arg) {
assert(interp != NULL);
assert(assertions != NULL);
assert(arg != NULL);
if (*assertions) {
TclObjListFreeList((*assertions)->invariants);
} else {
*assertions = AssertionCreateStore();
}
(*assertions)->invariants = AssertionNewList(interp, arg);
}
#endif /* NSF_WITH_ASSERTIONS */
/***********************************************************************
* Mixin support
***********************************************************************/
/*
* push a mixin stack information on this object
*/
static int MixinStackPush(NsfObject *object) nonnull(1);
static int
MixinStackPush(NsfObject *object) {
register NsfMixinStack *h = NEW(NsfMixinStack);
assert(object != NULL);
h->currentCmdPtr = NULL;
h->nextPtr = object->mixinStack;
object->mixinStack = h;
/*fprintf(stderr, "MixinStackPush %p %s\n", object, ObjectName(object));*/
return 1;
}
/*
* Pop a mixin stack information on this object.
*/
static void MixinStackPop(NsfObject *object) nonnull(1);
static void
MixinStackPop(NsfObject *object) {
register NsfMixinStack *h;
assert(object != NULL);
/*fprintf(stderr, "MixinStackPop %p %s\n", object, ObjectName(object));*/
h = object->mixinStack;
object->mixinStack = h->nextPtr;
FREE(NsfMixinStack, h);
}
/*
* Appends NsfClasses (containing the mixin-classes and their
* super-classes) to 'mixinClasses' list from a given mixinList.
*/
static void MixinComputeOrderFullList(Tcl_Interp *interp, NsfCmdList **mixinList,
NsfClasses **mixinClasses,
NsfClasses **checkList, int level) nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static void
MixinComputeOrderFullList(Tcl_Interp *interp, NsfCmdList **mixinList,
NsfClasses **mixinClasses,
NsfClasses **checkList, int level) {
NsfCmdList *m;
NsfClasses *pl, **clPtr = mixinClasses;
assert(interp != NULL);
assert(mixinList != NULL);
assert(mixinClasses != NULL);
assert(checkList != NULL);
CmdListRemoveDeleted(mixinList, GuardDel);
for (m = *mixinList; m; m = m->nextPtr) {
NsfClass *mCl = NsfGetClassFromCmdPtr(m->cmdPtr);
if (mCl != NULL) {
for (pl = PrecedenceOrder(mCl); pl; pl = pl->nextPtr) {
if (IsRootClass(pl->cl) == 0) {
NsfClassOpt *opt = pl->cl->opt;
/* fprintf(stderr, "find %p %s in checklist 1 %p\n",
pl->cl, ClassName(pl->cl), *checkList);*/
if (*checkList != NULL && NsfClassListFind(*checkList, pl->cl)) {
/*fprintf(stderr, "+++ never add %s\n", ClassName(pl->cl));*/
} else {
if (opt && opt->classMixins) {
/*
* Compute transitively the (class) mixin-classes of this
* added class.
*/
NsfClassListAdd(checkList, pl->cl, NULL);
/*fprintf(stderr, "+++ transitive %s\n", ClassName(pl->cl));*/
MixinComputeOrderFullList(interp, &opt->classMixins, mixinClasses,
checkList, level+1);
}
/*fprintf(stderr, "+++ add to mixinClasses %p path: %s clPtr %p\n",
mixinClasses, ClassName(pl->cl), clPtr);*/
clPtr = NsfClassListAddNoDup(clPtr, pl->cl, m->clientData, NULL);
}
}
}
}
}
if (level == 0 && *checkList) {
NsfClassListFree(*checkList);
*checkList = NULL;
}
}
/*
*----------------------------------------------------------------------
* MixinResetOrder --
*
* Free the mixin order of the provided object if it exists.
*
* Results:
* void
*
* Side effects:
* Frees potentially the mixinOrder list.
*
*----------------------------------------------------------------------
*/
static void MixinResetOrder(NsfObject *object) nonnull(1);
static void
MixinResetOrder(NsfObject *object) {
assert(object != NULL);
CmdListFree(&object->mixinOrder, NULL /*GuardDel*/);
object->mixinOrder = NULL;
}
/*
*----------------------------------------------------------------------
* NsfClassListAddPerClassMixins --
*
* Append the class mixins to the provided list. CheckList is used to
* eliminate potential duplicates.
*
* Results:
* void
*
* Side effects:
* Appends potentially elements to classListPtr and checkList
*
*----------------------------------------------------------------------
*/
static void NsfClassListAddPerClassMixins(Tcl_Interp *interp, NsfClass *cl,
NsfClasses **classListPtr, NsfClasses **checkList)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static void
NsfClassListAddPerClassMixins(Tcl_Interp *interp, NsfClass *cl,
NsfClasses **classListPtr, NsfClasses **checkList) {
NsfClasses *pl;
assert(interp != NULL);
assert(cl != NULL);
assert(classListPtr != NULL);
assert(checkList != NULL);
for (pl = PrecedenceOrder(cl); pl; pl = pl->nextPtr) {
NsfClassOpt *clopt = pl->cl->opt;
if (clopt && clopt->classMixins) {
MixinComputeOrderFullList(interp, &clopt->classMixins,
classListPtr, checkList, 1);
}
}
}
/*
*----------------------------------------------------------------------
* MixinComputeOrder --
*
* Compute a duplicate-free linearized order of per-object and per-class
* mixins and the class inheritance. The precedence rule is that the last
* occurrence makes it into the final list.
*
* Results:
* void
*
* Side effects:
* object->mixinOrder is updated.
*
*----------------------------------------------------------------------
*/
static void MixinComputeOrder(Tcl_Interp *interp, NsfObject *object) nonnull(1) nonnull(2);
static void
MixinComputeOrder(Tcl_Interp *interp, NsfObject *object) {
NsfClasses *fullList, *checkList = NULL, *mixinClasses = NULL, *clPtr;
assert(interp != NULL);
assert(object != NULL);
if (object->mixinOrder != NULL) {
MixinResetOrder(object);
}
/* Append per-obj mixins */
if (object->opt != NULL) {
NsfCmdList *m;
MixinComputeOrderFullList(interp, &object->opt->objMixins, &mixinClasses,
&checkList, 1);
/*
* Add per-object mixins to checkList to avoid that theses classes in the
* class mixins.
*
* TODO: we could add this already in MixinComputeOrderFullList() if we
* provide an additional flag.
*/
for (m = object->opt->objMixins; m; m = m->nextPtr) {
NsfClass *mCl = NsfGetClassFromCmdPtr(m->cmdPtr);
if (mCl != NULL) {
NsfClassListAddNoDup(&checkList, mCl, NULL, NULL);
}
}
}
/*fprintf(stderr, "%s ", ObjectName(object));
NsfClassListPrint("MixinComputeOrder poms", mixinClasses);
NsfClassListPrint("MixinComputeOrder poms checkList", checkList);*/
/* append per-class mixins */
NsfClassListAddPerClassMixins(interp, object->cl, &mixinClasses, &checkList);
/*fprintf(stderr, "%s ", ObjectName(object));
NsfClassListPrint("MixinComputeOrder poms+pcms", mixinClasses);
CmdListPrint(interp, "mixinOrder", object->mixinOrder);*/
if (checkList != NULL) {
NsfClassListFree(checkList);
}
fullList = mixinClasses;
/*
* Don't add duplicates or classes of the precedence order to the resulting
* list.
*/
for (clPtr = mixinClasses; clPtr; clPtr = clPtr->nextPtr) {
NsfClass *cl = clPtr->cl;
NsfClasses *checker;
/*fprintf(stderr, "--- Work on %s\n", ClassName(cl));
CmdListPrint(interp, "mixinOrder", object->mixinOrder);*/
checker = NsfClassListFind(clPtr->nextPtr, cl);
/*
* If checker is set, it is a duplicate and ignored.
*/
if (checker == NULL) {
/* check object->cl hierarchy */
checker = NsfClassListFind(PrecedenceOrder(object->cl), cl);
/*
* If checker is set, it was found in the class hierarchy and it is
* ignored.
*/
}
if (checker == NULL) {
/* add the class to the mixinOrder list */
NsfCmdList *new;
/*fprintf(stderr, "--- adding to mixinOrder %s to cmdlist %p of object %s\n",
ClassName(cl), object->mixinOrder, ObjectName(object));*/
new = CmdListAdd(&object->mixinOrder, cl->object.id, NULL, /*noDuplicates*/ 0, 1);
/*CmdListPrint(interp, "mixinOrder", object->mixinOrder);*/
/*
* We require the first matching guard of the full list in the new
* client data
*/
checker = NsfClassListFind(fullList, cl);
if (checker != NULL) {
new->clientData = checker->clientData;
}
}
}
/* ... and free the memory of the full list */
if (fullList != NULL) {
NsfClassListFree(fullList);
}
/*CmdListPrint(interp, "mixin order\n", obj->mixinOrder);*/
}
/*
*----------------------------------------------------------------------
* MixinAdd --
*
* Add a mixinreg (mixin-class with a potential guard) provided as a
* Tcl_Obj* to 'mixinList' by appending it to the provided cmdList.
*
* Results:
* Tcl result code.
*
* Side effects:
* Potentially allocating cmd list elements added to the mixinList
*
*----------------------------------------------------------------------
*/
static int MixinAdd(Tcl_Interp *interp, NsfCmdList **mixinList, Tcl_Obj *nameObj, NsfClass *baseClass)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static int
MixinAdd(Tcl_Interp *interp, NsfCmdList **mixinList, Tcl_Obj *nameObj, NsfClass *baseClass) {
NsfClass *mixinCl;
Tcl_Obj *guardObj;
NsfCmdList *new;
assert(interp != NULL);
assert(mixinList != NULL);
assert(nameObj != NULL);
assert(baseClass != NULL);
/*fprintf(stderr, "MixinAdd gets obj %p type %p %s\n", nameObj, nameObj->typePtr, (nameObj->typePtr != NULL) ?nameObj->typePtr->name : "NULL");*/
/*
* When the provided nameObj is of type NsfMixinregObjType, the nsf specific
* converter was called already; otherwise call the converter here.
*/
if (nameObj->typePtr != &NsfMixinregObjType) {
if (Tcl_ConvertToType(interp, nameObj, &NsfMixinregObjType) != TCL_OK) {
return TCL_ERROR;
}
}
NsfMixinregGet(interp, nameObj, &mixinCl, &guardObj);
assert((Tcl_Command_flags(mixinCl->object.id) & CMD_IS_DELETED) == 0);
new = CmdListAdd(mixinList, mixinCl->object.id, NULL, /*noDuplicates*/ 1, 1);
if (guardObj != NULL) {
GuardAdd(new, guardObj);
} else if (new->clientData != NULL) {
GuardDel(new);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* AppendMatchingElement --
*
* Call AppendElement to the resultObj for values matching the specified
* pattern.
*
* Results:
* void
*
* Side effects:
* Appends element to the result object
*
*----------------------------------------------------------------------
*/
static void AppendMatchingElement(Tcl_Interp *interp, Tcl_Obj *resultObj, Tcl_Obj *nameObj, const char *pattern)
nonnull(1) nonnull(2) nonnull(3);
static void
AppendMatchingElement(Tcl_Interp *interp, Tcl_Obj *resultObj, Tcl_Obj *nameObj, const char *pattern) {
assert(interp != NULL);
assert(resultObj != NULL);
assert(nameObj != NULL);
if (pattern == NULL || Tcl_StringMatch( ObjStr(nameObj), pattern)) {
Tcl_ListObjAppendElement(interp, resultObj, nameObj);
}
}
/*
*----------------------------------------------------------------------
* AppendMatchingElementsFromCmdList --
*
* Apply AppendMatchingElement() to all elements of the passed
* Cmdlist
*
* Results:
* 1 iff a matching object was provided and it was found; 0 otherwise
*
* Side effects:
* Appends elements to the result
*
*----------------------------------------------------------------------
*/
static int AppendMatchingElementsFromCmdList(Tcl_Interp *interp, NsfCmdList *cmdl,
Tcl_Obj *resultObj,
const char *pattern, NsfObject *matchObject)
nonnull(1) nonnull(2) nonnull(3);
static int
AppendMatchingElementsFromCmdList(Tcl_Interp *interp, NsfCmdList *cmdList,
Tcl_Obj *resultObj,
const char *pattern, NsfObject *matchObject) {
int rc = 0;
assert(interp != NULL);
assert(cmdList != NULL);
assert(resultObj != NULL);
do {
NsfObject *object = NsfGetObjectFromCmdPtr(cmdList->cmdPtr);
if (object != NULL) {
if (matchObject == object) {
return 1;
} else {
AppendMatchingElement(interp, resultObj, object->cmdName, pattern);
}
}
cmdList = cmdList->nextPtr;
} while (cmdList != NULL);
return rc;
}
/*
*----------------------------------------------------------------------
* AppendMatchingElementsFromClasses --
*
* Apply AppendMatchingElement() to all elements of the passed
* class list
*
* Results:
* 1 iff a matching object was provided and it was found; 0 otherwise
*
* Side effects:
* Appends elements to the result
*
*----------------------------------------------------------------------
*/
static int AppendMatchingElementsFromClasses(Tcl_Interp *interp, NsfClasses *cls,
const char *pattern, NsfObject *matchObject)
nonnull(1);
static int
AppendMatchingElementsFromClasses(Tcl_Interp *interp, NsfClasses *cls,
const char *pattern, NsfObject *matchObject) {
Tcl_Obj *resultObj;
assert(interp != NULL);
resultObj = Tcl_GetObjResult(interp);
for ( ; cls != NULL; cls = cls->nextPtr) {
NsfObject *object = (NsfObject *)cls->cl;
if (object != NULL) {
if (matchObject && object == matchObject) {
/*
* We have a matchObject and it is identical to obj,
* just return true and don't continue search
*/
return 1;
} else {
AppendMatchingElement(interp, resultObj, object->cmdName, pattern);
}
}
}
return 0;
}
/*
*----------------------------------------------------------------------
* GetAllInstances --
*
* Get all instances of a class recursively into an initialized
* String key hash-table
*
* Results:
* void
*
* Side effects:
* Passed hash-table contains instances
*
*----------------------------------------------------------------------
*/
static void
GetAllInstances(Tcl_Interp *interp, NsfCmdList **instances, NsfClass *startCl) {
NsfClasses *clPtr, *subClasses = TransitiveSubClasses(startCl);
assert(interp != NULL);
assert(instances != NULL);
assert(startCl != NULL);
for (clPtr = subClasses; clPtr; clPtr = clPtr->nextPtr) {
Tcl_HashTable *tablePtr = &clPtr->cl->instances;
Tcl_HashSearch search;
Tcl_HashEntry *hPtr;
for (hPtr = Tcl_FirstHashEntry(tablePtr, &search); hPtr;
hPtr = Tcl_NextHashEntry(&search)) {
NsfObject *inst = (NsfObject *)Tcl_GetHashKey(tablePtr, hPtr);
Command *cmdPtr;
if (unlikely(inst->flags & NSF_TCL_DELETE)) {
NsfLog(interp, NSF_LOG_NOTICE, "Object %s is apparently deleted", ObjectName(inst));
continue;
}
cmdPtr = (Command *)inst->id;
assert(cmdPtr != NULL);
if (unlikely(cmdPtr->nsPtr->flags & NS_DYING)) {
NsfLog(interp, NSF_LOG_WARN, "Namespace of %s is apparently deleted", ObjectName(inst));
continue;
}
#if !defined(NDEBUG)
{
/*
* Make sure, we can still lookup the object; the object has to be still
* alive.
*/
NsfObject *object = GetObjectFromString(interp, ObjectName(inst));
/*
* HIDDEN OBJECTS: Provide a fallback to a pointer-based lookup. This is
* needed because objects can be hidden or re-exposed under a different
* name which is not reported back to the object system by the [interp
* hide|expose] mechanism. However, we still want to process hidden and
* re-exposed objects during cleanup like ordinary, exposed ones.
*/
if (unlikely(object == NULL)) {
object = GetHiddenObjectFromCmd(interp, inst->id);
}
assert(object != NULL);
}
#endif
/*fprintf (stderr, " -- %p flags %.6x activation %d %s id %p id->flags %.6x "
"nsPtr->flags %.6x (instance of %s)\n",
inst, inst->flags, inst->activationCount,
ObjectName(inst), inst->id, cmdPtr->flags, (cmdPtr->nsPtr != NULL) ? cmdPtr->nsPtr->flags : 0,
ClassName(clPtr->cl));*/
CmdListAdd(instances, inst->id, (NsfClass *)inst, 0, 0);
}
}
if (subClasses != NULL) NsfClassListFree(subClasses);
}
/*
*----------------------------------------------------------------------
* AddToResultSet --
*
* Helper function to add classes to the result set (implemented as
* a hash-table), flagging test for matchObject as result
*
* Results:
* 1 iff a matching object was provided and it was found; 0 otherwise
*
* Side effects:
* Appends optionally element to the result object
*
*----------------------------------------------------------------------
*/
static int AddToResultSet(Tcl_Interp *interp, Tcl_HashTable *destTablePtr,
Tcl_Obj *resultSet, NsfObject *object, int *new,
int appendResult, const char *pattern, NsfObject *matchObject)
nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(5);
static int
AddToResultSet(Tcl_Interp *interp, Tcl_HashTable *destTablePtr,
Tcl_Obj *resultSet, NsfObject *object, int *new,
int appendResult, const char *pattern, NsfObject *matchObject) {
assert(interp != NULL);
assert(destTablePtr != NULL);
assert(resultSet != NULL);
assert(object != NULL);
assert(new != NULL);
Tcl_CreateHashEntry(destTablePtr, (char *)object, new);
if (*new) {
if (matchObject && matchObject == object) {
return 1;
}
if (appendResult != 0) {
AppendMatchingElement(interp, resultSet, object->cmdName, pattern);
}
}
return 0;
}
/*
*----------------------------------------------------------------------
* AddToResultSetWithGuards --
*
* Helper function to add classes with guards to the result set
* (implemented as a hash-table, full version as a Tcl list), flagging test
* for matchObject as result.
*
* Results:
* 1 iff a matching object was provided and it was found; 0 otherwise
*
* Side effects:
* Appends optionally element to the result object
*
*----------------------------------------------------------------------
*/
static int AddToResultSetWithGuards(Tcl_Interp *interp, Tcl_HashTable *destTablePtr,
Tcl_Obj *resultSet, NsfClass *cl,
ClientData clientData, int *new, int appendResult,
const char *pattern, NsfObject *matchObject)
nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(6) nonnull(5);
static int
AddToResultSetWithGuards(Tcl_Interp *interp, Tcl_HashTable *destTablePtr,
Tcl_Obj *resultSet, NsfClass *cl,
ClientData clientData, int *new, int appendResult,
const char *pattern, NsfObject *matchObject) {
assert(clientData != NULL);
assert(interp != NULL);
assert(destTablePtr != NULL);
assert(cl != NULL);
assert(resultSet != NULL);
assert(new != NULL);
Tcl_CreateHashEntry(destTablePtr, (char *)cl, new);
if (*new) {
if (appendResult != 0) {
if (pattern == NULL || Tcl_StringMatch(ClassName(cl), pattern)) {
Tcl_Obj *listObj = Tcl_NewListObj(0, NULL);
Tcl_Obj *g = (Tcl_Obj *) clientData;
INCR_REF_COUNT(listObj);
Tcl_ListObjAppendElement(interp, listObj, cl->object.cmdName);
Tcl_ListObjAppendElement(interp, listObj, NsfGlobalObjs[NSF_GUARD_OPTION]);
Tcl_ListObjAppendElement(interp, listObj, g);
Tcl_ListObjAppendElement(interp, resultSet, listObj);
DECR_REF_COUNT(listObj);
}
}
if (matchObject && matchObject == (NsfObject *)cl) {
return 1;
}
}
return 0;
}
/*
*----------------------------------------------------------------------
* GetAllObjectMixinsOf --
*
* Computes a set of classes, into which this class was mixed in
* via per object mixin. The function gets recursively all per
* object mixins from an class and its subclasses/isClassMixinOf
* and adds it into an initialized object ptr hash-table
* (TCL_ONE_WORD_KEYS)
*
* Results:
* Tcl return code
*
* Side effects:
* The set of classes is returned in the provided hash-table
*
*----------------------------------------------------------------------
*/
static int GetAllObjectMixinsOf(Tcl_Interp *interp, Tcl_HashTable *destTablePtr,
Tcl_Obj *resultSet, NsfClass *startCl, int isMixin,
int appendResult, const char *pattern, NsfObject *matchObject)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static int
GetAllObjectMixinsOf(Tcl_Interp *interp, Tcl_HashTable *destTablePtr,
Tcl_Obj *resultSet, NsfClass *startCl, int isMixin,
int appendResult, const char *pattern, NsfObject *matchObject) {
int rc = 0, new = 0;
NsfClasses *sc;
assert(interp != NULL);
assert(destTablePtr != NULL);
assert(resultSet != NULL);
assert(startCl != NULL);
/*fprintf(stderr, "startCl = %s, opt %p, isMixin %d, pattern '%s', matchObject %p\n",
ClassName(startCl), startCl->opt, isMixin, pattern, matchObject);*/
/*
* check all subclasses of startCl for mixins
*/
for (sc = startCl->sub; sc; sc = sc->nextPtr) {
rc = GetAllObjectMixinsOf(interp, destTablePtr, resultSet,
sc->cl, isMixin, appendResult,
pattern, matchObject);
if (rc != 0) {return rc;}
}
/*fprintf(stderr, "check subclasses of %s done\n", ClassName(startCl));*/
if (startCl->opt != NULL) {
NsfCmdList *m;
for (m = startCl->opt->isClassMixinOf; m; m = m->nextPtr) {
NsfClass *cl;
/* we should have no deleted commands in the list */
assert((Tcl_Command_flags(m->cmdPtr) & CMD_IS_DELETED) == 0);
cl = NsfGetClassFromCmdPtr(m->cmdPtr);
assert(cl != NULL);
/*fprintf(stderr, "check %s mixinof %s\n", ClassName(cl), ClassName((startCl)));*/
rc = GetAllObjectMixinsOf(interp, destTablePtr, resultSet,
cl, isMixin, appendResult,
pattern, matchObject);
/* fprintf(stderr, "check %s mixinof %s done\n",
ClassName(cl), ClassName(startCl));*/
if (rc != 0) {return rc;}
}
}
/*
* check, if startCl has associated per-object mixins
*/
if (startCl->opt != NULL) {
NsfCmdList *m;
for (m = startCl->opt->isObjectMixinOf; m; m = m->nextPtr) {
NsfObject *object;
/* we should have no deleted commands in the list */
assert((Tcl_Command_flags(m->cmdPtr) & CMD_IS_DELETED) == 0);
object = NsfGetObjectFromCmdPtr(m->cmdPtr);
assert(object != NULL);
rc = AddToResultSet(interp, destTablePtr, resultSet,
object, &new, appendResult,
pattern, matchObject);
if (rc == 1) {return rc;}
}
}
return rc;
}
/*
*----------------------------------------------------------------------
* AddClassListEntriesToMixinsOfSet --
*
* Helper function of GetAllClassMixinsOf(). Iterate over the provided
* class list (mixinOfs) and add every entry to the result set. If the
* entry is new, GetAllClassMixinsOf() is called recursively.
*
* Results:
* 1 in case the operation is finished.
*
* Side effects:
* The set of classes is returned in the provided hash-table
*
*----------------------------------------------------------------------
*/
static int
AddClassListEntriesToMixinsOfSet(Tcl_Interp *interp, Tcl_HashTable *destTablePtr,
Tcl_Obj *resultSet, NsfCmdList *mixinOfs, int appendResult,
const char *pattern, NsfObject *matchObject)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static int GetAllClassMixinsOf(Tcl_Interp *interp, Tcl_HashTable *destTablePtr,
Tcl_Obj *resultSet, /*@notnull@*/ NsfClass *startCl,
int isMixin, int appendResult,
const char *pattern, NsfObject *matchObject)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static int
AddClassListEntriesToMixinsOfSet(Tcl_Interp *interp, Tcl_HashTable *destTablePtr,
Tcl_Obj *resultSet, NsfCmdList *mixinOfs, int appendResult,
const char *pattern, NsfObject *matchObject) {
NsfCmdList *m;
assert(interp != NULL);
assert(destTablePtr != NULL);
assert(resultSet != NULL);
assert(mixinOfs != NULL);
for (m = mixinOfs; m; m = m->nextPtr) {
NsfClass *cl;
int rc, new;
/* We must not have deleted commands in the list */
assert((Tcl_Command_flags(m->cmdPtr) & CMD_IS_DELETED) == 0);
cl = NsfGetClassFromCmdPtr(m->cmdPtr);
assert(cl != NULL);
rc = AddToResultSet(interp, destTablePtr, resultSet,
&cl->object, &new,
appendResult, pattern, matchObject);
if (rc != 0) {return 1;}
if (new != 0) {
/*fprintf(stderr, "... new mixin -closure of %s => %s\n",
ClassName(startCl), ClassName(cl));*/
rc = GetAllClassMixinsOf(interp, destTablePtr, resultSet, cl, 1,
appendResult, pattern, matchObject);
if (rc != 0) {return 1;}
}
}
return 0;
}
/*
*----------------------------------------------------------------------
* GetAllClassMixinsOf --
*
* Computes a set of classes, into which this class was mixed in
* via as a class mixin. The function gets recursively all per
* class mixins from an class and its subclasses and adds it
* into an initialized object ptr hash-table (TCL_ONE_WORD_KEYS)
*
* Results:
* Tcl return code
*
* Side effects:
* The set of classes is returned in the provided hash-table
*
*----------------------------------------------------------------------
*/
static int
GetAllClassMixinsOf(Tcl_Interp *interp, Tcl_HashTable *destTablePtr,
Tcl_Obj *resultSet, /*@notnull@*/ NsfClass *startCl,
int isPCM, int appendResult,
const char *pattern, NsfObject *matchObject) {
int rc = 0, new = 0;
NsfClasses *sc;
assert(interp != NULL);
assert(destTablePtr != NULL);
assert(resultSet != NULL);
assert(startCl != NULL);
/*fprintf(stderr, "GetAllClassMixinsOf startCl = %p %s, opt %p, isPCM %d\n",
startCl, ClassName(startCl), startCl->opt, isPCM);*/
/*
* If the startCl is a per class mixin, add it to the result set
*/
if (isPCM != 0) {
rc = AddToResultSet(interp, destTablePtr, resultSet,
&startCl->object, &new,
appendResult, pattern, matchObject);
if (rc == 1) {return rc;}
/*
* check all subclasses of startCl for mixins
*/
for (sc = startCl->sub; sc; sc = sc->nextPtr) {
#if !defined(NDEBUG)
if (sc->cl == startCl) {
/*
* Sanity check: it seems that we can create via
* __default_superclass a class which has itself as subclass!
*/
fprintf(stderr, "... STRANGE %p is subclass of %p %s, sub %p\n",
(void *)sc->cl, (void *)startCl, ClassName(startCl), (void *)startCl->sub);
continue;
}
#endif
assert(sc->cl != startCl);
rc = GetAllClassMixinsOf(interp, destTablePtr, resultSet,
sc->cl, isPCM,
appendResult, pattern, matchObject);
if (rc != 0) {
return rc;
}
}
}
/*
* Check, if startCl has a subclass which is a per-class mixin of some other
* class(es)
*/
{
NsfClasses *subClasses = TransitiveSubClasses(startCl), *subClass;
for (subClass = subClasses; subClass; subClass = subClass->nextPtr) {
NsfClass *subCl = subClass->cl;
/*fprintf(stderr, "... check subclass = %p %s, opt %p, isPCM %d\n",
subCl, ClassName(subCl), subCl->opt, isPCM);*/
if (subCl->opt && subCl->opt->isClassMixinOf) {
rc = AddClassListEntriesToMixinsOfSet(interp, destTablePtr, resultSet,
subCl->opt->isClassMixinOf,
appendResult, pattern, matchObject);
if (rc != 0) {goto subclassExit;}
}
}
subclassExit:
if (subClasses != NULL) NsfClassListFree(subClasses);
if (rc != 0) {return rc;}
}
/*
* Check, if startCl is a per-class mixin of some other classes
*/
if (startCl->opt && startCl->opt->isClassMixinOf) {
rc = AddClassListEntriesToMixinsOfSet(interp, destTablePtr, resultSet,
startCl->opt->isClassMixinOf,
appendResult, pattern, matchObject);
}
return rc;
}
/*
*----------------------------------------------------------------------
* GetAllClassMixins --
*
* Computes a set class-mixins of a given class and handles
* transitive cases. The classes are added it into an initialized
* object ptr hash-table (TCL_ONE_WORD_KEYS)
*
* Results:
* Tcl return code
*
* Side effects:
* The set of classes is returned in the provided hash-table
*
*----------------------------------------------------------------------
*/
static int GetAllClassMixins(Tcl_Interp *interp, Tcl_HashTable *destTablePtr,
Tcl_Obj *resultObj, NsfClass *startCl,
int withGuards, const char *pattern, NsfObject *matchObject)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static int
GetAllClassMixins(Tcl_Interp *interp, Tcl_HashTable *destTablePtr,
Tcl_Obj *resultObj, NsfClass *startCl,
int withGuards, const char *pattern, NsfObject *matchObject) {
int rc = 0, new = 0;
NsfClass *cl;
NsfClasses *sc;
assert(interp != NULL);
assert(destTablePtr != NULL);
assert(resultObj != NULL);
assert(startCl != NULL);
/*
* check this class for class mixins.
*/
if (startCl->opt != NULL) {
NsfCmdList *m;
for (m = startCl->opt->classMixins; m; m = m->nextPtr) {
/* we should have no deleted commands in the list */
assert((Tcl_Command_flags(m->cmdPtr) & CMD_IS_DELETED) == 0);
cl = NsfGetClassFromCmdPtr(m->cmdPtr);
assert(cl != NULL);
/* fprintf(stderr, "class mixin found: %s\n", ClassName(cl)); */
if ((withGuards) && (m->clientData)) {
/* fprintf(stderr, "AddToResultSetWithGuards: %s\n", ClassName(cl)); */
rc = AddToResultSetWithGuards(interp, destTablePtr, resultObj,
cl, m->clientData, &new,
1, pattern, matchObject);
} else {
/* fprintf(stderr, "AddToResultSet: %s\n", ClassName(cl)); */
rc = AddToResultSet(interp, destTablePtr, resultObj,
&cl->object, &new,
1, pattern, matchObject);
}
if (rc == 1) {return rc;}
if (new != 0) {
/* fprintf(stderr, "class mixin GetAllClassMixins for: %s (%s)\n",
ClassName(cl), ClassName(startCl)); */
rc = GetAllClassMixins(interp, destTablePtr, resultObj,
cl, withGuards,
pattern, matchObject);
if (rc != 0) {return rc;}
}
}
}
/*
* Check all superClasses of startCl for class mixins.
*/
for (sc = startCl->super; sc; sc = sc->nextPtr) {
/* fprintf(stderr, "Superclass GetAllClassMixins for %s (%s)\n",
ClassName(sc->cl), ClassName(startCl)); */
rc = GetAllClassMixins(interp, destTablePtr, resultObj,
sc->cl, withGuards,
pattern, matchObject);
if (rc != 0) {return rc;}
}
return rc;
}
/*
*----------------------------------------------------------------------
* RemoveFromClassMixinsOf --
*
* Remove the class (provided as a cmd) from all isClassMixinOf definitions
* from the provided classes (provided as cmdlist).
*
* Results:
* void
*
* Side effects:
* Deletes potentially some entries in the isClassMixinOf lists.
*
*----------------------------------------------------------------------
*/
static void RemoveFromClassMixinsOf(Tcl_Command cmd, NsfCmdList *cmdlist) nonnull(1) nonnull(2);
static void
RemoveFromClassMixinsOf(Tcl_Command cmd, NsfCmdList *cmdList) {
assert(cmd != NULL);
assert(cmdList != NULL);
do {
NsfClass *ncl = NsfGetClassFromCmdPtr(cmdList->cmdPtr);
NsfClassOpt *nclopt = (ncl != NULL) ? ncl->opt : NULL;
if (nclopt != NULL) {
NsfCmdList *del = CmdListFindCmdInList(cmd, nclopt->isClassMixinOf);
if (del != NULL) {
/* fprintf(stderr, "Removing class %s from isClassMixinOf of class %s\n",
ClassName(cl), ObjStr(NsfGetClassFromCmdPtr(cmdList->cmdPtr)->object.cmdName)); */
del = CmdListRemoveFromList(&nclopt->isClassMixinOf, del);
CmdListDeleteCmdListEntry(del, GuardDel);
}
}
cmdList = cmdList->nextPtr;
} while (cmdList != NULL);
}
/*
*----------------------------------------------------------------------
* RemoveFromObjectMixinsOf --
*
* Remove the class (provided as a cmd) from all isObjectMixinOf definitions
* from the provided classes (provided as cmdList).
*
* Results:
* void
*
* Side effects:
* Deletes potentially some entries in the isObjectMixinOf lists.
*
*----------------------------------------------------------------------
*/
static void RemoveFromObjectMixinsOf(Tcl_Command cmd, NsfCmdList *cmdList) nonnull(1) nonnull(2);
static void
RemoveFromObjectMixinsOf(Tcl_Command cmd, NsfCmdList *cmdList) {
assert(cmd != NULL);
assert(cmdList != NULL);
for ( ; likely(cmdList != NULL); cmdList = cmdList->nextPtr) {
NsfClass *cl = NsfGetClassFromCmdPtr(cmdList->cmdPtr);
NsfClassOpt *clopt = (cl != NULL) ? cl->opt : NULL;
if (clopt != NULL) {
NsfCmdList *del = CmdListFindCmdInList(cmd, clopt->isObjectMixinOf);
if (del != NULL) {
/* fprintf(stderr, "Removing object %s from isObjectMixinOf of Class %s\n",
ObjectName(object), ObjStr(NsfGetClassFromCmdPtr(cmdList->cmdPtr)->object.cmdName)); */
del = CmdListRemoveFromList(&clopt->isObjectMixinOf, del);
CmdListDeleteCmdListEntry(del, GuardDel);
}
} /* else fprintf(stderr, "CleanupDestroyObject %s: NULL pointer in mixins!\n", ObjectName(object)); */
}
}
/*
*----------------------------------------------------------------------
* RemoveFromClassmixins --
*
* Remove the class (provided as a cmd) from all class mixins lists
* from the provided classes (provided as cmdList).
*
* Results:
* void
*
* Side effects:
* Deletes potentially some entries in the class mixins lists.
*
*----------------------------------------------------------------------
*/
static void RemoveFromClassmixins(Tcl_Command cmd, NsfCmdList *cmdList) nonnull(1) nonnull(2);
static void
RemoveFromClassmixins(Tcl_Command cmd, NsfCmdList *cmdList) {
assert(cmd != NULL);
assert(cmdList != NULL);
for ( ; likely(cmdList != NULL); cmdList = cmdList->nextPtr) {
NsfClass *cl = NsfGetClassFromCmdPtr(cmdList->cmdPtr);
NsfClassOpt *clopt = (cl != NULL) ? cl->opt : NULL;
if (clopt != NULL) {
NsfCmdList *del = CmdListFindCmdInList(cmd, clopt->classMixins);
if (del != NULL) {
/* fprintf(stderr, "Removing class %s from mixins of object %s\n",
ClassName(cl), ObjStr(NsfGetObjectFromCmdPtr(cmdList->cmdPtr)->cmdName)); */
del = CmdListRemoveFromList(&clopt->classMixins, del);
CmdListDeleteCmdListEntry(del, GuardDel);
if (cl->object.mixinOrder != NULL) MixinResetOrder(&cl->object);
}
}
}
}
/*
*----------------------------------------------------------------------
* RemoveFromObjectMixins --
*
* Remove the class (provided as a cmd) from all object mixin lists
* from the provided classes (provided as cmdList).
*
* Results:
* void
*
* Side effects:
* Deletes potentially some entries in the object mixins lists.
*
*----------------------------------------------------------------------
*/
static void RemoveFromObjectMixins(Tcl_Command cmd, NsfCmdList *cmdList) nonnull(1) nonnull(2);
static void
RemoveFromObjectMixins(Tcl_Command cmd, NsfCmdList *cmdList) {
assert(cmd != NULL);
assert(cmdList != NULL);
for ( ; likely(cmdList != NULL); cmdList = cmdList->nextPtr) {
NsfObject *nobj = NsfGetObjectFromCmdPtr(cmdList->cmdPtr);
NsfObjectOpt *objopt = (nobj != 0) ? nobj->opt : NULL;
if (objopt != NULL) {
NsfCmdList *del = CmdListFindCmdInList(cmd, objopt->objMixins);
if (del != NULL) {
/* fprintf(stderr, "Removing class %s from mixins of object %s\n",
ClassName(cl), ObjStr(NsfGetObjectFromCmdPtr(cmdList->cmdPtr)->cmdName)); */
del = CmdListRemoveFromList(&objopt->objMixins, del);
CmdListDeleteCmdListEntry(del, GuardDel);
if (nobj->mixinOrder != NULL) MixinResetOrder(nobj);
}
}
}
}
/*
*----------------------------------------------------------------------
* ResetOrderOfObjectsUsingThisClassAsObjectMixin --
*
* Reset the per-object mixin order for all objects having this class as
* per-object mixin.
*
* Results:
* void
*
* Side effects:
* Deletes potentially the mixin list for the objects.
*
*----------------------------------------------------------------------
*/
static void ResetOrderOfObjectsUsingThisClassAsObjectMixin(NsfClass *cl) nonnull(1);
static void
ResetOrderOfObjectsUsingThisClassAsObjectMixin(NsfClass *cl) {
/*fprintf(stderr, "ResetOrderOfObjectsUsingThisClassAsObjectMixin %s - %p\n",
ClassName(cl), cl->opt);*/
assert(cl != NULL);
if (cl->opt != NULL) {
NsfCmdList *ml;
for (ml = cl->opt->isObjectMixinOf; ml; ml = ml->nextPtr) {
NsfObject *object = NsfGetObjectFromCmdPtr(ml->cmdPtr);
if (object != NULL) {
if (object->mixinOrder != NULL) {
MixinResetOrder(object);
}
object->flags &= ~NSF_MIXIN_ORDER_VALID;
}
}
}
}
/*
*----------------------------------------------------------------------
* MixinInvalidateObjOrders --
*
* Reset mixin order for all instances of the class and the instances of
* its dependent subclasses. This function is typically called, when the
* the class hierarchy or the class mixins have changed and invalidate
* mixin entries in all dependent instances.
*
* Results:
* void
*
* Side effects:
* Deletes potentially the mixin list for the objects and classes.
*
*----------------------------------------------------------------------
*/
static void MixinInvalidateObjOrders(Tcl_Interp *interp, NsfClass *cl, NsfClasses *subClasses)
nonnull(1) nonnull(2) nonnull(3);
static void
MixinInvalidateObjOrders(Tcl_Interp *interp, NsfClass *cl, NsfClasses *subClasses) {
assert(interp != NULL);
assert(cl != NULL);
assert(subClasses != NULL);
/*
* Iterate over the subclass hierarchy.
*/
for (; likely(subClasses != NULL); subClasses = subClasses->nextPtr) {
Tcl_HashSearch hSrch;
Tcl_HashEntry *hPtr;
Tcl_HashTable *instanceTablePtr;
/*
* Reset mixin order for all objects having this class as per object mixin
*/
ResetOrderOfObjectsUsingThisClassAsObjectMixin(subClasses->cl);
if (subClasses->cl->parsedParamPtr != NULL) {
ParsedParamFree(subClasses->cl->parsedParamPtr);
subClasses->cl->parsedParamPtr = NULL;
}
instanceTablePtr = &subClasses->cl->instances;
for (hPtr = Tcl_FirstHashEntry(instanceTablePtr, &hSrch); hPtr;
hPtr = Tcl_NextHashEntry(&hSrch)) {
NsfObject *object = (NsfObject *)Tcl_GetHashKey(instanceTablePtr, hPtr);
assert(object != NULL);
if (!(object->flags & NSF_DURING_DELETE)
&& (object->flags & NSF_MIXIN_ORDER_DEFINED_AND_VALID)) {
MixinResetOrder(object);
object->flags &= ~NSF_MIXIN_ORDER_VALID;
}
}
}
}
/*
*----------------------------------------------------------------------
* MixinComputeDefined --
*
* This function computes the mixin order for the provided object and
* adjusts the mixin flags accordingly. The mixin order is either
*
* DEFINED (there are mixins on the instance),
* NONE (there are no mixins for the instance),
* or INVALID (a class restructuring has occurred,
* thus it is not clear whether mixins are defined or not).
*
* If the mixin order is INVALID, MixinComputeDefined can be used to
* compute the order and set the instance to DEFINED or NONE
*
* Results:
* void
*
* Side effects:
* Might alter the mixin order.
*
*----------------------------------------------------------------------
*/
static void
MixinComputeDefined(Tcl_Interp *interp, NsfObject *object) {
assert(interp != NULL);
assert(object != NULL);
MixinComputeOrder(interp, object);
object->flags |= NSF_MIXIN_ORDER_VALID;
if (object->mixinOrder != NULL) {
object->flags |= NSF_MIXIN_ORDER_DEFINED;
} else {
object->flags &= ~NSF_MIXIN_ORDER_DEFINED;
}
}
/*
*----------------------------------------------------------------------
* ComputePrecedenceList --
*
* Returns the precedence list for the provided object. The precedence
* list can optionally include the mixins and the root class. If pattern is
* provided, this is used as well for filtering. The caller has to free the
* resulting list via NsfClassListFree();
*
* Results:
* Precedence list in form of a class list, potentially NULL due to filtering.
*
* Side effects:
* Allocated class list.
*
*----------------------------------------------------------------------
*/
static NsfClasses *ComputePrecedenceList(Tcl_Interp *interp, NsfObject *object,
const char *pattern, int withMixins, int withRootClass)
nonnull(1) nonnull(2);
static NsfClasses *
ComputePrecedenceList(Tcl_Interp *interp, NsfObject *object,
const char *pattern,
int withMixins, int withRootClass) {
NsfClasses *precedenceList = NULL, *pcl, **npl = &precedenceList;
assert(interp != NULL);
assert(object != NULL);
if (withMixins != 0) {
if (!(object->flags & NSF_MIXIN_ORDER_VALID)) {
MixinComputeDefined(interp, object);
}
if (object->flags & NSF_MIXIN_ORDER_DEFINED_AND_VALID) {
NsfCmdList *ml;
for (ml = object->mixinOrder; ml; ml = ml->nextPtr) {
NsfClass *mixin = NsfGetClassFromCmdPtr(ml->cmdPtr);
if (pattern && !Tcl_StringMatch(ClassName(mixin), pattern)) {
continue;
}
npl = NsfClassListAdd(npl, mixin, NULL);
}
}
}
pcl = PrecedenceOrder(object->cl);
for (; pcl; pcl = pcl->nextPtr) {
if (withRootClass == 0 && IsRootClass(pcl->cl)) {
continue;
}
if (pattern && !Tcl_StringMatch(ClassName(pcl->cl), pattern)) {
continue;
}
npl = NsfClassListAdd(npl, pcl->cl, NULL);
}
return precedenceList;
}
/*
*----------------------------------------------------------------------
* SeekCurrent --
*
* Walk through the command list until the provided command is reached.
* return the next entry. If the provided cmd is NULL, then return the
* first entry.
*
* Results:
* Command list pointer or NULL
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static NsfCmdList *SeekCurrent(Tcl_Command cmd, register NsfCmdList *cmdListPtr) nonnull(2);
static NsfCmdList *
SeekCurrent(Tcl_Command cmd, register NsfCmdList *cmdListPtr) {
assert(cmdListPtr != NULL);
if (cmd != NULL) {
for (; likely(cmdListPtr != NULL); cmdListPtr = cmdListPtr->nextPtr) {
if (cmdListPtr->cmdPtr == cmd) {
return cmdListPtr->nextPtr;
}
}
return NULL;
}
return cmdListPtr;
}
/*
*----------------------------------------------------------------------
* CanInvokeMixinMethod --
*
* Check, whether the provided cmd is allowed to be dispatch in a mixin.
*
* Results:
* Tcl result code or NSF_CHECK_FAILED in case, search should continue
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int CanInvokeMixinMethod(Tcl_Interp *interp, NsfObject *object, Tcl_Command cmd, NsfCmdList *cmdList)
nonnull(1) nonnull(2) nonnull(4);
static int
CanInvokeMixinMethod(Tcl_Interp *interp, NsfObject *object, Tcl_Command cmd, NsfCmdList *cmdList) {
int result = TCL_OK;
int cmdFlags = Tcl_Command_flags(cmd);
assert(interp != NULL);
assert(object != NULL);
assert(cmdList != NULL);
if ((cmdFlags & NSF_CMD_CALL_PRIVATE_METHOD) ||
((cmdFlags & NSF_CMD_CLASS_ONLY_METHOD) && !NsfObjectIsClass(object))) {
/*
* The command is not applicable for objects (i.e. might crash,
* since it expects a class record); therefore skip it
*/
return NSF_CHECK_FAILED;
}
if (cmdList->clientData && !RUNTIME_STATE(interp)->guardCount) {
/*fprintf(stderr, "guard call\n");*/
result = GuardCall(object, interp, (Tcl_Obj *)cmdList->clientData, NULL);
}
return result;
}
/*
*----------------------------------------------------------------------
* MixinSearchProc --
*
* Search for a method name in the mixin list of the provided
* object. Depending on the state of the mixin stack, the search starts
* at the beginning or at the last dispatched, shadowed method on
* the mixin path.
*
* Results:
* Tcl result code.
* Returns as well always cmd (maybe NULL) in cmdPtr.
* Returns on success as well the class and the currentCmdPointer
* for continuation in next.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int MixinSearchProc(Tcl_Interp *interp, NsfObject *object,
const char *methodName, Tcl_Obj *methodObj,
NsfClass **clPtr, Tcl_Command *currentCmdPtr, Tcl_Command *cmdPtr)
nonnull(1) nonnull(2) nonnull(3) nonnull(5) nonnull(6) nonnull(7);
static int
MixinSearchProc(Tcl_Interp *interp, NsfObject *object,
const char *methodName, Tcl_Obj *methodObj,
NsfClass **clPtr, Tcl_Command *currentCmdPtr, Tcl_Command *cmdPtr) {
Tcl_Command cmd = NULL;
NsfCmdList *cmdList;
NsfClass *cl = NULL;
int result = TCL_OK;
assert(interp != NULL);
assert(object != NULL);
assert(object->mixinStack);
assert(methodName != NULL);
assert(clPtr != NULL);
assert(currentCmdPtr != NULL);
assert(cmdPtr != NULL);
/* ensure that the mixin order is valid */
assert(object->flags & NSF_MIXIN_ORDER_VALID);
if (object->mixinOrder == NULL) {
return TCL_OK;
}
cmdList = SeekCurrent(object->mixinStack->currentCmdPtr, object->mixinOrder);
RUNTIME_STATE(interp)->currentMixinCmdPtr = (cmdList != NULL) ? cmdList->cmdPtr : NULL;
/*fprintf(stderr,"searching for '%s' in %p\n", methodName, cmdList);
CmdListPrint(interp, "MixinSearch CL = \n", cmdList);*/
if (unlikely(*clPtr && *cmdPtr)) {
Tcl_Command lastCmdPtr = NULL;
/*fprintf(stderr, "... new branch\n");*/
for (; cmdList; cmdList = cmdList->nextPtr) {
NsfClass *cl1;
/*
* Ignore deleted commands
*/
if (Tcl_Command_flags(cmdList->cmdPtr) & CMD_IS_DELETED) {
continue;
}
cl1 = NsfGetClassFromCmdPtr(cmdList->cmdPtr);
assert(cl1 != NULL);
lastCmdPtr = cmdList->cmdPtr;
if (cl1 == *clPtr) {
/*
* The wanted class was found. Check guards and permissions to
* determine whether we can invoke this method.
*/
result = CanInvokeMixinMethod(interp, object, *cmdPtr, cmdList);
if (likely(result == TCL_OK)) {
cl = cl1;
} else if (result == NSF_CHECK_FAILED) {
result = TCL_OK;
}
/*
* No matter, what the result is, stop the search through the mixin
* classes here.
*/
break;
}
}
if (cl != NULL) {
assert(cmdList != NULL);
/*
* On success: return class and cmdList->cmdPtr;
*/
*currentCmdPtr = cmdList->cmdPtr;
/*fprintf(stderr, "... mixinsearch success returns %p (cl %s)\n", cmd, ClassName(cl));*/
} else {
/*
* We did not find the absolute entry in the mixins. Set the
* currentCmdPtr (on the mixin stack) to the last entry to flag, that
* the mixin list should not started again on a next.
*/
*cmdPtr = NULL;
*currentCmdPtr = lastCmdPtr;
/*fprintf(stderr, "... mixinsearch success failure %p (cl %s)\n", cmd, ClassName(cl));*/
}
return result;
} else {
for (; cmdList; cmdList = cmdList->nextPtr) {
/*
* Ignore deleted commands
*/
if (Tcl_Command_flags(cmdList->cmdPtr) & CMD_IS_DELETED) {
continue;
}
cl = NsfGetClassFromCmdPtr(cmdList->cmdPtr);
assert(cl != NULL);
/*
fprintf(stderr, "+++ MixinSearch %s->%s in %p cmdPtr %p clientData %p\n",
ObjectName(object), methodName, cmdList,
cmdList->cmdPtr, cmdList->clientData);
*/
cmd = FindMethod(cl->nsPtr, methodName);
if (cmd == NULL) {
continue;
}
result = CanInvokeMixinMethod(interp, object, cmd, cmdList);
if (unlikely(result == TCL_ERROR)) {
return result;
} else if (result == NSF_CHECK_FAILED) {
result = TCL_OK;
cmd = NULL;
continue;
}
/*
* cmd was found and is applicable. We return class and cmdPtr.
*/
*clPtr = cl;
*currentCmdPtr = cmdList->cmdPtr;
/*fprintf(stderr, "mixinsearch returns %p (cl %s)\n", cmd, ClassName(cl));*/
break;
}
}
*cmdPtr = cmd;
return result;
}
/*
* info option for mixins and class mixins
*/
static int MixinInfo(Tcl_Interp *interp, NsfCmdList *m, const char *pattern,
int withGuards, NsfObject *matchObject)
nonnull(1);
static int
MixinInfo(Tcl_Interp *interp, NsfCmdList *m, const char *pattern,
int withGuards, NsfObject *matchObject) {
Tcl_Obj *list = Tcl_NewListObj(0, NULL);
assert(interp != NULL);
/*fprintf(stderr, " mixin info m=%p, pattern %s, matchObject %p\n",
m, pattern, matchObject);*/
while (m) {
NsfClass *mixinClass = NsfGetClassFromCmdPtr(m->cmdPtr);
/* fprintf(stderr, " mixin info m=%p, next=%p, pattern %s, matchObject %p\n",
m, m->next, pattern, matchObject);*/
if (mixinClass &&
(pattern == NULL
|| (matchObject != NULL && &(mixinClass->object) == matchObject)
|| (matchObject == NULL && Tcl_StringMatch(ObjStr(mixinClass->object.cmdName), pattern)))) {
if (withGuards && m->clientData) {
Tcl_Obj *l = Tcl_NewListObj(0, NULL);
Tcl_Obj *g = (Tcl_Obj *) m->clientData;
Tcl_ListObjAppendElement(interp, l, mixinClass->object.cmdName);
Tcl_ListObjAppendElement(interp, l, NsfGlobalObjs[NSF_GUARD_OPTION]);
Tcl_ListObjAppendElement(interp, l, g);
Tcl_ListObjAppendElement(interp, list, l);
} else {
Tcl_ListObjAppendElement(interp, list, mixinClass->object.cmdName);
}
if (matchObject != NULL) break;
}
m = m->nextPtr;
}
Tcl_SetObjResult(interp, list);
return TCL_OK;
}
/*
* info option for mixinofs and isClassMixinOf
*/
static Tcl_Command MixinSearchMethodByName(NsfCmdList *mixinList, const char *name, NsfClass **clPtr)
nonnull(1) nonnull(2) nonnull(3);
static Tcl_Command
MixinSearchMethodByName(NsfCmdList *mixinList, const char *name, NsfClass **clPtr) {
Tcl_Command cmd;
assert(mixinList != NULL);
assert(name != NULL);
assert(clPtr != NULL);
for (; likely(mixinList != NULL); mixinList = mixinList->nextPtr) {
NsfClass *foundCl = NsfGetClassFromCmdPtr(mixinList->cmdPtr);
if (foundCl && SearchCMethod(foundCl, name, &cmd)) {
*clPtr = foundCl;
return cmd;
}
}
return NULL;
}
/*
* Filter-Commands
*/
/*
* The search method implements filter search order for object and
* class filter: first a given name is interpreted as fully qualified
* method name. If no method is found, a proc is searched with fully
* name. Otherwise the simple name is searched on the heritage order:
* object (only for per-object filters), class, meta-class
*/
static Tcl_Command FilterSearch(const char *name, NsfObject *startingObject,
NsfClass *startingClass, NsfClass **clPtr)
nonnull(1) nonnull(4);
static Tcl_Command
FilterSearch(const char *name, NsfObject *startingObject,
NsfClass *startingClass, NsfClass **clPtr) {
Tcl_Command cmd = NULL;
assert(name != NULL);
assert(clPtr != NULL);
if (startingObject != NULL) {
NsfObjectOpt *opt = startingObject->opt;
/*
* the object-specific filter can also be defined on the object's
* class, its hierarchy, or the respective class mixins; thus use the
* object's class as start point for the class-specific search then ...
*/
startingClass = startingObject->cl;
/*
* search for filters on object mixins
*/
if (opt && opt->objMixins) {
if ((cmd = MixinSearchMethodByName(opt->objMixins, name, clPtr))) {
return cmd;
}
}
}
/*
* search for class filters on class mixins
*/
if (startingClass != NULL) {
NsfClassOpt *opt = startingClass->opt;
if (opt && opt->classMixins) {
if ((cmd = MixinSearchMethodByName(opt->classMixins, name, clPtr))) {
return cmd;
}
}
}
/*
* search for object procs that are used as filters
*/
if (startingObject && startingObject->nsPtr) {
/*fprintf(stderr, "search filter %s as proc \n", name);*/
if ((cmd = FindMethod(startingObject->nsPtr, name))) {
*clPtr = (NsfClass *)startingObject;
return cmd;
}
}
/*
* ok, no filter on obj or mixins -> search class
*/
if (startingClass != NULL) {
*clPtr = SearchCMethod(startingClass, name, &cmd);
if (*clPtr == NULL) {
/*
* If no filter is found yet -> search the meta-class
*/
*clPtr = SearchCMethod(startingClass->object.cl, name, &cmd);
}
}
return cmd;
}
/*
* Filter Guards
*/
/* check a filter guard, return 1 if ok */
static int GuardCheck(Tcl_Interp *interp, Tcl_Obj *guardObj) nonnull(1) nonnull(2);
static int
GuardCheck(Tcl_Interp *interp, Tcl_Obj *guardObj) {
NsfRuntimeState *rst = RUNTIME_STATE(interp);
int result;
assert(interp != NULL);
assert(guardObj != NULL);
/*
* if there are more than one filter guard for this filter
* (i.e. they are inherited), then they are OR combined
* -> if one check succeeds => return 1
*/
/*fprintf(stderr, "checking guard **%s**\n", ObjStr(guardObj));*/
rst->guardCount++;
result = CheckConditionInScope(interp, guardObj);
rst->guardCount--;
/*fprintf(stderr, "checking guard **%s** returned rc=%d\n", ObjStr(guardObj), rc);*/
if (likely(result == TCL_OK)) {
/* fprintf(stderr, " +++ OK\n"); */
return TCL_OK;
} else if (unlikely(result == TCL_ERROR)) {
Tcl_Obj *sr = Tcl_GetObjResult(interp);
INCR_REF_COUNT(sr);
NsfPrintError(interp, "Guard error: '%s'\n%s", ObjStr(guardObj), ObjStr(sr));
DECR_REF_COUNT(sr);
return TCL_ERROR;
}
/*
fprintf(stderr, " +++ FAILED\n");
*/
return NSF_CHECK_FAILED;
}
/*
static void
GuardPrint(Tcl_Interp *interp, ClientData clientData) {
Tcl_Obj *guardObj = (TclObj *) clientData;
fprintf(stderr, " +++ \n");
if (guardObj != NULL) {
fprintf(stderr, " * %s \n", ObjStr(guardObj));
}
fprintf(stderr, " +++ \n");
}
*/
static void
GuardDel(NsfCmdList *guardList) {
assert(guardList != NULL);
/*fprintf(stderr, "GuardDel %p clientData = %p\n",
guardList, (guardList != NULL) ? guardList->clientData : NULL);*/
if (guardList->clientData != NULL) {
DECR_REF_COUNT2("guardObj", (Tcl_Obj *)guardList->clientData);
guardList->clientData = NULL;
}
}
NSF_INLINE static void
GuardAdd(NsfCmdList *guardList, Tcl_Obj *guardObj) {
assert(guardList != NULL);
assert(guardObj != NULL);
GuardDel(guardList);
if (strlen(ObjStr(guardObj)) > 0) {
INCR_REF_COUNT2("guardObj", guardObj);
guardList->clientData = guardObj;
/*fprintf(stderr, "guard added to %p cmdPtr=%p, clientData= %p\n",
guardList, guardList->cmdPtr, guardList->clientData);
*/
}
}
static int
GuardCall(NsfObject *object, Tcl_Interp *interp, Tcl_Obj *guardObj, NsfCallStackContent *cscPtr) {
int result = TCL_OK;
Tcl_Obj *res = Tcl_GetObjResult(interp); /* save the result */
CallFrame frame, *framePtr = &frame;
assert(object != NULL);
assert(interp != NULL);
assert(guardObj != NULL);
INCR_REF_COUNT(res);
/*
* For the guard push a fake call-frame on the Tcl stack so that
* e.g. a "self calledproc" and other methods in the guard behave
* like in the proc.
*/
if (cscPtr != NULL) {
Nsf_PushFrameCsc(interp, cscPtr, framePtr);
} else {
Nsf_PushFrameObj(interp, object, framePtr);
}
result = GuardCheck(interp, guardObj);
if (cscPtr != NULL) {
Nsf_PopFrameCsc(interp, framePtr);
} else {
Nsf_PopFrameObj(interp, framePtr);
}
if (result != TCL_ERROR) {
Tcl_SetObjResult(interp, res); /* restore the result */
}
DECR_REF_COUNT(res);
return result;
}
/*
*----------------------------------------------------------------------
* GuardAddFromDefinitionList --
*
* Add a guard to the specified destination list (first arg) from a list of
* definitions (last arg). If the provided cmd is found in the list of
* definitions, it is added to the destination list if it has non-null
* client data.
*
* Results:
* Returns 0 or 1 depending on wether the cmd is part of the
* definition list.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int GuardAddFromDefinitionList(NsfCmdList *dest, Tcl_Command interceptorCmd,
NsfCmdList *interceptorDefList)
nonnull(1) nonnull(2) nonnull(3);
static int
GuardAddFromDefinitionList(NsfCmdList *dest, Tcl_Command interceptorCmd,
NsfCmdList *interceptorDefList) {
NsfCmdList *h;
assert(interceptorCmd != NULL);
assert(dest != NULL);
assert(interceptorDefList != NULL);
h = CmdListFindCmdInList(interceptorCmd, interceptorDefList);
if (h != NULL) {
if (h->clientData != NULL) GuardAdd(dest, (Tcl_Obj *) h->clientData);
return 1;
}
return 0;
}
/*
*----------------------------------------------------------------------
* GuardAddInheritedGuards --
*
* Add a inherited guards to the provided destination list.
*
* Results:
* None.
*
* Side effects:
* Updates potentially destination list
*
*----------------------------------------------------------------------
*/
static void GuardAddInheritedGuards(Tcl_Interp *interp, NsfCmdList *dest,
NsfObject *object, Tcl_Command filterCmd)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static void
GuardAddInheritedGuards(Tcl_Interp *interp, NsfCmdList *dest,
NsfObject *object, Tcl_Command filterCmd) {
NsfClasses *pl;
int guardAdded = 0;
NsfObjectOpt *opt;
assert(filterCmd != NULL);
assert(interp != NULL);
assert(dest != NULL);
assert(object != NULL);
/* search guards for class filters registered on mixins */
if (!(object->flags & NSF_MIXIN_ORDER_VALID)) {
MixinComputeDefined(interp, object);
}
if (object->flags & NSF_MIXIN_ORDER_DEFINED_AND_VALID) {
NsfCmdList *ml;
for (ml = object->mixinOrder; ml != NULL && !guardAdded; ml = ml->nextPtr) {
NsfClass *mixin = NsfGetClassFromCmdPtr(ml->cmdPtr);
if (mixin && mixin->opt && mixin->opt->classFilters) {
guardAdded = GuardAddFromDefinitionList(dest, filterCmd, mixin->opt->classFilters);
}
}
}
/* search per-object filters */
opt = object->opt;
if (!guardAdded && opt && opt->objFilters) {
guardAdded = GuardAddFromDefinitionList(dest, filterCmd, opt->objFilters);
}
if (guardAdded == 0) {
/* search per-class filters */
for (pl = PrecedenceOrder(object->cl); !guardAdded && pl; pl = pl->nextPtr) {
NsfClassOpt *clopt = pl->cl->opt;
if (clopt && clopt->classFilters) {
guardAdded = GuardAddFromDefinitionList(dest, filterCmd, clopt->classFilters);
}
}
/*
* if this is not a registered filter, it is an inherited filter, like:
* Class create A
* A method f ...
* Class create B -superclass A
* B method {{f {}}}
* B filter f
* -> get the guard from the filter that inherits it (here B->f)
*/
if (guardAdded == 0) {
NsfCmdList *registeredFilter =
CmdListFindNameInList(interp, (char *) Tcl_GetCommandName(interp, filterCmd),
object->filterOrder);
if (registeredFilter && registeredFilter->clientData) {
GuardAdd(dest, (Tcl_Obj *) registeredFilter->clientData);
}
}
}
}
/*
*----------------------------------------------------------------------
* GuardList --
*
* Set interp result to a named guard in the provided guardList. guardList
* might be NULL.
*
* Results:
* interp result
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int GuardList(Tcl_Interp *interp, NsfCmdList *guardList, const char *interceptorName)
nonnull(1) nonnull(3);
static int
GuardList(Tcl_Interp *interp, NsfCmdList *guardList, const char *interceptorName) {
assert(interp != NULL);
assert(interceptorName != NULL);
if (guardList != NULL) {
/* try to find simple name first */
NsfCmdList *h = CmdListFindNameInList(interp, interceptorName, guardList);
if (h == NULL) {
/* maybe it is a qualified name */
Tcl_Command cmd = NSFindCommand(interp, interceptorName);
if (cmd != NULL) {
h = CmdListFindCmdInList(cmd, guardList);
}
}
if (h != NULL) {
Tcl_ResetResult(interp);
if (h->clientData != NULL) {
Tcl_Obj *g = (Tcl_Obj *) h->clientData;
Tcl_SetObjResult(interp, g);
}
return TCL_OK;
}
}
return NsfPrintError(interp, "info guard: can't find filter/mixin %s", interceptorName);
}
/*
*----------------------------------------------------------------------
* FilterAddActive --
*
* Add a method name to the set of methods, which were used as filters in
* the current interp.
*
* TODO: let the set shrink, when filters are removed.
*
* Results:
* None.
*
* Side effects:
* Adding or updating of a hash entry
*
*----------------------------------------------------------------------
*/
static void FilterAddActive(Tcl_Interp *interp, const char *methodName) nonnull(1) nonnull(2);
static void
FilterAddActive(Tcl_Interp *interp, const char *methodName) {
NsfRuntimeState *rst = RUNTIME_STATE(interp);
Tcl_HashEntry *hPtr;
int newItem;
assert(interp != NULL);
assert(methodName != NULL);
hPtr = Tcl_CreateHashEntry(&rst->activeFilterTablePtr, methodName, &newItem);
if (newItem != 0) {
Tcl_SetHashValue(hPtr, INT2PTR(1));
} else {
int count = PTR2INT(Tcl_GetHashValue(hPtr));
Tcl_SetHashValue(hPtr, INT2PTR(count+1));
}
}
/*
*----------------------------------------------------------------------
* FilterIsActive --
*
* Check, wether a method name is in the set of methods, which were used as
* filters in the current interp.
*
* Results:
* Boolean
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static int FilterIsActive(Tcl_Interp *interp, const char *methodName) nonnull(1) nonnull(2);
static int
FilterIsActive(Tcl_Interp *interp, const char *methodName) {
NsfRuntimeState *rst = RUNTIME_STATE(interp);
Tcl_HashEntry *hPtr;
assert(interp != NULL);
assert(methodName != NULL);
hPtr = Tcl_CreateHashEntry(&rst->activeFilterTablePtr, methodName, NULL);
return (hPtr != NULL);
}
/*
*----------------------------------------------------------------------
* FiltersDefined --
*
* Return the number of defined distinct names of filters.
*
* Results:
* Positive number.
*
* Side effects:
* none.
*
*----------------------------------------------------------------------
*/
static int FiltersDefined(Tcl_Interp *interp) nonnull(1);
static int
FiltersDefined(Tcl_Interp *interp) {
NsfRuntimeState *rst = RUNTIME_STATE(interp);
assert(interp != NULL);
return Tcl_HashSize(&rst->activeFilterTablePtr);
}
/*
*----------------------------------------------------------------------
* FilterAdd --
*
* Append a filter command to the 'filterList' of an obj/class
*
* Results:
* Standard Tcl result
*
* Side effects:
* Modifies interp result in error situations.
*
*----------------------------------------------------------------------
*/
static int FilterAdd(Tcl_Interp *interp, NsfCmdList **filterList, Tcl_Obj *filterregObj,
NsfObject *startingObject, NsfClass *startingClass)
nonnull(1) nonnull(2) nonnull(3);
static int
FilterAdd(Tcl_Interp *interp, NsfCmdList **filterList, Tcl_Obj *filterregObj,
NsfObject *startingObject, NsfClass *startingClass) {
Tcl_Obj *filterObj = NULL;
Tcl_Obj *guardObj = NULL;
Tcl_Command cmd;
NsfCmdList *new;
NsfClass *cl;
assert(interp != NULL);
assert(filterList != NULL);
assert(filterregObj != NULL);
/*
* When the provided nameObj is of type NsfFilterregObjType, the nsf specific
* converter was called already; otherwise call the converter here.
*/
if (filterregObj->typePtr != &NsfFilterregObjType) {
/*fprintf(stderr, "FilterAdd: convert %s in FilterAdd\n", ObjStr(filterregObj));*/
if (Tcl_ConvertToType(interp, filterregObj, &NsfFilterregObjType) != TCL_OK) {
return TCL_ERROR;
}
} else {
/*fprintf(stderr, "FilterAdd: %s already converted\n", ObjStr(filterregObj));*/
}
NsfFilterregGet(interp, filterregObj, &filterObj, &guardObj);
if (!(cmd = FilterSearch(ObjStr(filterObj), startingObject, startingClass, &cl))) {
if (startingObject != NULL) {
return NsfPrintError(interp, "object filter: can't find filterproc '%s' on %s ",
ObjStr(filterObj), ObjectName(startingObject));
} else {
return NsfPrintError(interp, "class filter: can't find filterproc '%s' on %s ",
ObjStr(filterObj), ClassName(startingClass));
}
}
/*fprintf(stderr, " +++ adding filter %s cl %p\n", ObjStr(nameObj), cl);*/
new = CmdListAdd(filterList, cmd, cl, /*noDuplicates*/ 1, 1);
FilterAddActive(interp, ObjStr(filterObj));
if (guardObj != NULL) {
GuardAdd(new, guardObj);
} else if (new->clientData != NULL) {
GuardDel(new);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* FilterResetOrder --
*
* Reset the filter order cached in obj->filterOrder
*
* Results:
* None
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static void FilterResetOrder(NsfObject *object) nonnull(1);
static void
FilterResetOrder(NsfObject *object) {
assert(object != NULL);
CmdListFree(&object->filterOrder, GuardDel);
object->filterOrder = NULL;
}
/*
*----------------------------------------------------------------------
* FilterSearchAgain --
*
* Search the filter in the hierarchy again with FilterSearch, e.g. upon
* changes in the class hierarchy or mixins that carry the filter command,
* so that we can be sure it is still reachable.
*
* Results:
* None
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static void FilterSearchAgain(Tcl_Interp *interp, NsfCmdList **filters,
NsfObject *startingObject, NsfClass *startingClass)
nonnull(1) nonnull(2);
static void
FilterSearchAgain(Tcl_Interp *interp, NsfCmdList **filters,
NsfObject *startingObject, NsfClass *startingClass) {
NsfCmdList *cmdList, *del;
assert(interp != NULL);
assert(filters != NULL);
CmdListRemoveDeleted(filters, GuardDel);
for (cmdList = *filters; cmdList; cmdList = cmdList->nextPtr) {
NsfClass *cl = NULL;
const char *simpleName = Tcl_GetCommandName(interp, cmdList->cmdPtr);
Tcl_Command cmd = FilterSearch(simpleName, startingObject, startingClass, &cl);
if (cmd == NULL) {
del = CmdListRemoveFromList(filters, cmdList);
CmdListDeleteCmdListEntry(del, GuardDel);
} else if (cmd != cmdList->cmdPtr) {
CmdListReplaceCmd(cmdList, cmd, cl);
}
}
/*
* some entries might be NULL now, if they are not found anymore
* -> delete those
* CmdListRemoveNulledEntries(filters, GuardDel);
*/
}
/*
*----------------------------------------------------------------------
* FilterInvalidateObjOrders --
*
* Invalidate filter entries in all dependent instances. This will be
* e.g. necessary, when the class hierarchy or the class filters have
* changed.
*
* Results:
* None
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static void FilterInvalidateObjOrders(Tcl_Interp *interp, NsfClasses *subClasses)
nonnull(1) nonnull(2);
static void
FilterInvalidateObjOrders(Tcl_Interp *interp, NsfClasses *subClasses) {
assert(interp != NULL);
assert(subClasses != NULL);
for (; likely(subClasses != NULL); subClasses = subClasses->nextPtr) {
Tcl_HashSearch hSrch;
Tcl_HashEntry *hPtr;
assert(subClasses->cl);
hPtr = &subClasses->cl->instances ?
Tcl_FirstHashEntry(&subClasses->cl->instances, &hSrch) : NULL;
/* recalculate the commands of all class-filter registrations */
if (subClasses->cl->opt != NULL) {
FilterSearchAgain(interp, &subClasses->cl->opt->classFilters, NULL, subClasses->cl);
}
for (; hPtr; hPtr = Tcl_NextHashEntry(&hSrch)) {
NsfObject *object = (NsfObject *)Tcl_GetHashKey(&subClasses->cl->instances, hPtr);
FilterResetOrder(object);
object->flags &= ~NSF_FILTER_ORDER_VALID;
/* recalculate the commands of all object filter registrations */
if (object->opt != NULL) {
FilterSearchAgain(interp, &object->opt->objFilters, object, NULL);
}
}
}
}
/*
*----------------------------------------------------------------------
* FilterRemoveDependentFilterCmds --
*
*
* Remove all filters from all subclasses that refer to "removeClass". This
* function is e.g. used to remove filters defined in superclass list from
* a dependent class.
*
* Results:
* None
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
/*
*/
static void FilterRemoveDependentFilterCmds(NsfClass *removeClass, NsfClasses *subClasses)
nonnull(1) nonnull(2);
static void
FilterRemoveDependentFilterCmds(NsfClass *removeClass, NsfClasses *subClasses) {
assert(removeClass != NULL);
assert(subClasses != NULL);
/*fprintf(stderr, "FilterRemoveDependentFilterCmds removeClass %p %s\n",
removeClass, ObjStr(removeClass->object.cmdName));*/
for (; likely(subClasses != NULL); subClasses = subClasses->nextPtr) {
Tcl_HashSearch hSrch;
Tcl_HashEntry *hPtr;
NsfClassOpt *opt;
assert(subClasses->cl);
hPtr = &subClasses->cl->instances ? Tcl_FirstHashEntry(&subClasses->cl->instances, &hSrch) : NULL;
opt = subClasses->cl->opt;
if (opt != NULL) {
CmdListRemoveContextClassFromList(&opt->classFilters, removeClass, GuardDel);
}
for (; hPtr; hPtr = Tcl_NextHashEntry(&hSrch)) {
NsfObject *object = (NsfObject *) Tcl_GetHashKey(&subClasses->cl->instances, hPtr);
if (object->opt != NULL) {
CmdListRemoveContextClassFromList(&object->opt->objFilters, removeClass, GuardDel);
}
}
}
}
/*
*----------------------------------------------------------------------
* MethodHandleObj --
*
* Builds a methodHandle from a method name. We assume, the methodName is
* not fully qualified (i.e. it must not start with a colon).
*
* Results:
* fresh Tcl_Obj
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static Tcl_Obj * MethodHandleObj(NsfObject *object, int withPer_object, const char *methodName)
nonnull(1) nonnull(3) returns_nonnull;
static Tcl_Obj *
MethodHandleObj(NsfObject *object, int withPer_object, const char *methodName) {
Tcl_Obj *resultObj;
assert(object != NULL);
assert(methodName != NULL);
assert(*methodName != ':');
resultObj = Tcl_NewStringObj((withPer_object == 1) ? "" : "::nsf::classes", -1);
Tcl_AppendObjToObj(resultObj, object->cmdName);
Tcl_AppendStringsToObj(resultObj, "::", methodName, (char *) NULL);
return resultObj;
}
/*
*----------------------------------------------------------------------
* FilterInfo --
*
* Set the interp results with a tcl list containing the content of the
* filter list. The options withGuards and withMethodHandles can be used
* for different output structures
*
* Results:
* Standard Tcl results
*
* Side effects:
* Updating interp result
*
*----------------------------------------------------------------------
*/
static int FilterInfo(Tcl_Interp *interp, NsfCmdList *f, const char *pattern,
int withGuards, int withMethodHandles) nonnull(1);
static int
FilterInfo(Tcl_Interp *interp, NsfCmdList *f, const char *pattern,
int withGuards, int withMethodHandles) {
Tcl_Obj *list = Tcl_NewListObj(0, NULL);
assert(interp != NULL);
/*
* Guard lists should only have unqualified filter lists when withGuards is
* activated. withMethodHandles has no effect when withGuards is specified.
*/
if (withGuards != 0) {
withMethodHandles = 0;
}
while (f) {
const char *simpleName = Tcl_GetCommandName(interp, f->cmdPtr);
if (pattern == NULL || Tcl_StringMatch(simpleName, pattern)) {
if (withGuards && f->clientData) {
Tcl_Obj *innerList = Tcl_NewListObj(0, NULL);
Tcl_Obj *g = (Tcl_Obj *) f->clientData;
Tcl_ListObjAppendElement(interp, innerList,
Tcl_NewStringObj(simpleName, -1));
Tcl_ListObjAppendElement(interp, innerList, NsfGlobalObjs[NSF_GUARD_OPTION]);
Tcl_ListObjAppendElement(interp, innerList, g);
Tcl_ListObjAppendElement(interp, list, innerList);
} else {
if (withMethodHandles != 0) {
NsfClass *filterClass = f->clorobj;
Tcl_ListObjAppendElement(interp, list,
MethodHandleObj((NsfObject *)filterClass,
!NsfObjectIsClass(&filterClass->object), simpleName));
} else {
Tcl_ListObjAppendElement(interp, list, Tcl_NewStringObj(simpleName, -1));
}
}
}
f = f->nextPtr;
}
Tcl_SetObjResult(interp, list);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* FilterComputeOrderFullList --
*
* Compute a fresh list of filters and append it to the filterList.
*
* Results:
* None
*
* Side effects:
* Updating filterList
*
*----------------------------------------------------------------------
*/
static void FilterComputeOrderFullList(Tcl_Interp *interp, NsfCmdList **filters,
NsfCmdList **filterList)
nonnull(1) nonnull(2) nonnull(3);
static void
FilterComputeOrderFullList(Tcl_Interp *interp, NsfCmdList **filters,
NsfCmdList **filterList) {
NsfCmdList *f ;
NsfClass *fcl;
NsfClasses *pl;
assert(interp != NULL);
assert(filters != NULL);
assert(filterList != NULL);
/*
* Ensure that no epoched command is in the filters list.
*/
CmdListRemoveDeleted(filters, GuardDel);
for (f = *filters; f; f = f->nextPtr) {
const char *simpleName = Tcl_GetCommandName(interp, f->cmdPtr);
fcl = f->clorobj;
CmdListAdd(filterList, f->cmdPtr, fcl, /*noDuplicates*/ 0, 1);
if (fcl && !NsfObjectIsClass(&fcl->object)) {
/* get the class from the object for per-object filter */
fcl = ((NsfObject *)fcl)->cl;
}
/* if we have a filter class -> search up the inheritance hierarchy*/
if (fcl != NULL) {
pl = PrecedenceOrder(fcl);
if (pl && pl->nextPtr) {
/* don't search on the start class again */
pl = pl->nextPtr;
/* now go up the hierarchy */
for(; pl; pl = pl->nextPtr) {
Tcl_Command pi = FindMethod(pl->cl->nsPtr, simpleName);
if (pi != NULL) {
CmdListAdd(filterList, pi, pl->cl, /*noDuplicates*/ 0, 1);
/*
fprintf(stderr, " %s::%s, ", ClassName(pl->cl), simpleName);
*/
}
}
}
}
}
/*CmdListPrint(interp, "FilterComputeOrderFullList....\n", *filterList);*/
}
/*
*----------------------------------------------------------------------
* FilterComputeOrder --
*
* Computes a linearized order of object and class filter. Then duplicates
* in the full list and with the class inheritance list of 'obj' are
* eliminated. The precedence rule is that the last occurrence makes it
* into the final list (object->filterOrder).
*
* Results:
* None
*
* Side effects:
* Updating interp result
*
*----------------------------------------------------------------------
*/
static void FilterComputeOrder(Tcl_Interp *interp, NsfObject *object) nonnull(1) nonnull(2);
static void
FilterComputeOrder(Tcl_Interp *interp, NsfObject *object) {
NsfCmdList *filterList = NULL, *next, *checker, *newList;
NsfClasses *pl;
assert(interp != NULL);
assert(object != NULL);
if (object->filterOrder != NULL) {
FilterResetOrder(object);
}
/*
fprintf(stderr, " List: ", ObjectName(object));
*/
/*
* Append class filters registered for mixins.
*/
if (!(object->flags & NSF_MIXIN_ORDER_VALID)) {
MixinComputeDefined(interp, object);
}
if (object->flags & NSF_MIXIN_ORDER_DEFINED_AND_VALID) {
NsfCmdList *ml;
for (ml = object->mixinOrder; ml != NULL; ml = ml->nextPtr) {
NsfClass *mixin = NsfGetClassFromCmdPtr(ml->cmdPtr);
if (mixin && mixin->opt && mixin->opt->classFilters) {
FilterComputeOrderFullList(interp, &mixin->opt->classFilters, &filterList);
}
}
}
/*
* Append per-obj filters.
*/
if (object->opt != NULL) {
FilterComputeOrderFullList(interp, &object->opt->objFilters, &filterList);
}
/*
* Append per-class filters.
*/
for (pl = PrecedenceOrder(object->cl); pl; pl = pl->nextPtr) {
NsfClassOpt *clopt = pl->cl->opt;
if (clopt && clopt->classFilters) {
FilterComputeOrderFullList(interp, &clopt->classFilters, &filterList);
}
}
/*
* Use no duplicates & no classes of the precedence order
* on the resulting list.
*/
while (filterList) {
/*
* Search for filterList->cmdPtr
*/
for (checker = next = filterList->nextPtr; checker; checker = checker->nextPtr) {
if (checker->cmdPtr == filterList->cmdPtr) {
break;
}
}
if (checker == NULL) {
/*
* filterList->cmdPtr was found
*/
newList = CmdListAdd(&object->filterOrder, filterList->cmdPtr, filterList->clorobj,
/*noDuplicates*/ 0, 1);
GuardAddInheritedGuards(interp, newList, object, filterList->cmdPtr);
/*
GuardPrint(interp, newList->clientData);
*/
}
CmdListDeleteCmdListEntry(filterList, GuardDel);
filterList = next;
}
}
/*
*----------------------------------------------------------------------
* FilterComputeDefined --
*
* Compute the state of the filter order. The filter order is either
*
* DEFINED (there are filter on the instance),
* NONE (there are no filter for the instance),
* or INVALID (a class restructuring has occurred, thus it is not clear
* whether filters are defined or not).
*
* If it is INVALID FilterComputeDefined can be used to compute the order
* and set the instance to DEFINE or NONE.
*
* Results:
* None
*
* Side effects:
* Updating object-flags
*
*----------------------------------------------------------------------
*/
static void
FilterComputeDefined(Tcl_Interp *interp, NsfObject *object) {
assert(interp != NULL);
assert(object != NULL);
FilterComputeOrder(interp, object);
object->flags |= NSF_FILTER_ORDER_VALID;
if (object->filterOrder != NULL) {
object->flags |= NSF_FILTER_ORDER_DEFINED;
} else {
object->flags &= ~NSF_FILTER_ORDER_DEFINED;
}
}
/*
*----------------------------------------------------------------------
* FilterStackPush --
*
* Push a filter stack information on this object and initialize it with
* calledProc.
*
* Results:
* None
*
* Side effects:
* Updating object->filterStack
*
*----------------------------------------------------------------------
*/
static void FilterStackPush(NsfObject *object, Tcl_Obj *calledProc) nonnull(1) nonnull(2);
static void
FilterStackPush(NsfObject *object, Tcl_Obj *calledProc) {
register NsfFilterStack *h = NEW(NsfFilterStack);
assert(object != NULL);
assert(calledProc != NULL);
h->currentCmdPtr = NULL;
h->calledProc = calledProc;
INCR_REF_COUNT(h->calledProc);
h->nextPtr = object->filterStack;
object->filterStack = h;
}
/*
*----------------------------------------------------------------------
* FilterStackPush --
*
* Pop filter stack information from the specified object
*
* Results:
* None
*
* Side effects:
* Free filter stack info
*
*----------------------------------------------------------------------
*/
static void FilterStackPop(NsfObject *object) nonnull(1);
static void
FilterStackPop(NsfObject *object) {
register NsfFilterStack *h;
assert(object != NULL);
h = object->filterStack;
object->filterStack = h->nextPtr;
/* free stack entry */
DECR_REF_COUNT(h->calledProc);
FREE(NsfFilterStack, h);
}
/*
*----------------------------------------------------------------------
* FilterFindReg --
*
* Search through the filter list on obj and class hierarchy for
* registration of a cmdPtr as filter
*
* Results:
* Returns a tcl list with the filter registration, like:
* " filter , " filter ,
* or an empty list, if not registered
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static Tcl_Obj * FilterFindReg(Tcl_Interp *interp, NsfObject *object, Tcl_Command cmd)
nonnull(1) nonnull(2) nonnull(3) returns_nonnull;
static Tcl_Obj *
FilterFindReg(Tcl_Interp *interp, NsfObject *object, Tcl_Command cmd) {
Tcl_Obj *list = Tcl_NewListObj(0, NULL);
NsfClasses *pl;
assert(interp != NULL);
assert(object != NULL);
assert(cmd != NULL);
/* search per-object filters */
if (object->opt && object->opt->objFilters &&
CmdListFindCmdInList(cmd, object->opt->objFilters)) {
Tcl_ListObjAppendElement(interp, list, object->cmdName);
Tcl_ListObjAppendElement(interp, list, NsfGlobalObjs[NSF_OBJECT]);
Tcl_ListObjAppendElement(interp, list, NsfGlobalObjs[NSF_FILTER]);
Tcl_ListObjAppendElement(interp, list,
Tcl_NewStringObj(Tcl_GetCommandName(interp, cmd), -1));
return list;
}
/* search per-class filters */
for (pl = PrecedenceOrder(object->cl); pl; pl = pl->nextPtr) {
NsfClassOpt *opt = pl->cl->opt;
if (opt && opt->classFilters) {
if (CmdListFindCmdInList(cmd, opt->classFilters)) {
Tcl_ListObjAppendElement(interp, list, pl->cl->object.cmdName);
Tcl_ListObjAppendElement(interp, list, NsfGlobalObjs[NSF_FILTER]);
Tcl_ListObjAppendElement(interp, list,
Tcl_NewStringObj(Tcl_GetCommandName(interp, cmd), -1));
return list;
}
}
}
return list;
}
/*
*----------------------------------------------------------------------
* FilterSearchProc --
*
* FilterSearchProc seeks the current filter and the relevant calling
* information (class and currentCmd). The function assumes to be called
* with an existing filterStack.
*
* Results:
* Tcl_Command or NULL
*
* Side effects:
* Updates *currentCmd and **cl
*
*----------------------------------------------------------------------
*/
/*
*/
static Tcl_Command FilterSearchProc(Tcl_Interp *interp, NsfObject *object,
Tcl_Command *currentCmd, NsfClass **clPtr)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static Tcl_Command
FilterSearchProc(Tcl_Interp *interp, NsfObject *object,
Tcl_Command *currentCmd, NsfClass **clPtr) {
assert(interp != NULL);
assert(object != NULL);
assert(object->filterStack);
assert(currentCmd != NULL);
assert(clPtr != NULL);
/*
* Ensure that the filter order is not invalid, otherwise compute order
* FilterComputeDefined(interp, object);
*/
assert(object->flags & NSF_FILTER_ORDER_VALID);
if (object->filterOrder != NULL) {
NsfCmdList *cmdList;
*currentCmd = NULL;
cmdList = SeekCurrent(object->filterStack->currentCmdPtr, object->filterOrder);
while (cmdList) {
/*fprintf(stderr, "FilterSearchProc found %s\n",
Tcl_GetCommandName(interp, (Tcl_Command)cmdList->cmdPtr));*/
if (Tcl_Command_cmdEpoch(cmdList->cmdPtr)) {
cmdList = cmdList->nextPtr;
} else if (FilterActiveOnObj(interp, object, cmdList->cmdPtr)) {
/* fprintf(stderr, "Filter <%s> -- Active on: %s\n",
Tcl_GetCommandName(interp, (Tcl_Command)cmdList->cmdPtr), ObjectName(object));
*/
object->filterStack->currentCmdPtr = cmdList->cmdPtr;
cmdList = SeekCurrent(object->filterStack->currentCmdPtr, object->filterOrder);
} else {
/* ok. we found it */
if (cmdList->clorobj && !NsfObjectIsClass(&cmdList->clorobj->object)) {
*clPtr = NULL;
} else {
*clPtr = cmdList->clorobj;
}
*currentCmd = cmdList->cmdPtr;
/* fprintf(stderr, "FilterSearchProc - found: %s, %p\n",
Tcl_GetCommandName(interp, (Tcl_Command)cmdList->cmdPtr), cmdList->cmdPtr);
*/
return cmdList->cmdPtr;
}
}
}
return NULL;
}
/*
*----------------------------------------------------------------------
* SuperclassAdd --
*
* Add a list of superClasses (specified in the argument vector) to
* the specified class. On the first call, the class has no previous
* superClasses.
*
* Results:
* Tcl result code.
*
* Side effects:
* Rearranging the class relations, flushing previous precedence orders.
*
*----------------------------------------------------------------------
*/
static int SuperclassAdd(Tcl_Interp *interp, NsfClass *cl, int oc, Tcl_Obj **ov, Tcl_Obj *arg)
nonnull(1) nonnull(2) nonnull(4) nonnull(5);
static int
SuperclassAdd(Tcl_Interp *interp, NsfClass *cl, int oc, Tcl_Obj **ov, Tcl_Obj *arg) {
NsfClasses *superClasses, *subClasses, *osl = NULL;
NsfObjectSystem *osPtr;
NsfClass **scl;
int i, j;
assert(interp != NULL);
assert(cl != NULL);
assert(ov != NULL);
assert(arg != NULL);
superClasses = PrecedenceOrder(cl);
subClasses = DependentSubClasses(cl);
/*
* We have to remove all dependent superclass filter referenced
* by class or one of its subclasses.
*
* Do not check the class "cl" itself (first entry in
* filterCheck class list).
*/
if (superClasses != NULL) {
superClasses = superClasses->nextPtr;
}
for (; superClasses; superClasses = superClasses->nextPtr) {
FilterRemoveDependentFilterCmds(superClasses->cl, subClasses);
}
/*
* Invalidate all interceptors orders of instances of this and of all
* depended classes.
*/
MixinInvalidateObjOrders(interp, cl, subClasses);
if (FiltersDefined(interp) > 0) {
FilterInvalidateObjOrders(interp, subClasses);
}
/*
* Build an array of superClasses from the argument vector.
*/
scl = NEW_ARRAY(NsfClass*, oc);
for (i = 0; i < oc; i++) {
if (GetClassFromObj(interp, ov[i], &scl[i], 1) != TCL_OK) {
FREE(NsfClass**, scl);
NsfClassListFree(subClasses);
return NsfObjErrType(interp, "superclass", arg, "a list of classes", NULL);
}
}
/*
* Check that superClasses don't precede their classes.
*/
for (i = 0; i < oc; i++) {
for (j = i+1; j < oc; j++) {
NsfClasses *dl = PrecedenceOrder(scl[j]);
dl = NsfClassListFind(dl, scl[i]);
if (dl != NULL) {
FREE(NsfClass**, scl);
NsfClassListFree(subClasses);
return NsfObjErrType(interp, "superclass", arg, "classes in dependence order", NULL);
}
}
}
/*
* Ensure that the current class and new superClasses are from the
* same object system.
*/
osPtr = GetObjectSystem(&cl->object);
for (i = 0; i < oc; i++) {
if (osPtr != GetObjectSystem(&scl[i]->object)) {
NsfPrintError(interp, "class \"%s\" has a different object system as class \"%s\"",
ClassName(cl), ClassName(scl[i]));
NsfClassListFree(subClasses);
FREE(NsfClass**, scl);
return TCL_ERROR;
}
}
while (cl->super) {
/*
* Build a backup of the old superclass list in case we need to revert.
*/
NsfClass *sc = cl->super->cl;
NsfClasses *l = osl;
osl = NEW(NsfClasses);
osl->cl = sc;
osl->nextPtr = l;
(void)RemoveSuper(cl, cl->super->cl);
}
for (i = 0; i < oc; i++) {
AddSuper(cl, scl[i]);
}
FlushPrecedences(subClasses);
NsfClassListFree(subClasses);
FREE(NsfClass**, scl);
if (unlikely(!PrecedenceOrder(cl))) {
NsfClasses *l;
/*
* There is a cycle in the superclass graph, we have to revert and return
* an error.
*/
while (cl->super) {
(void)RemoveSuper(cl, cl->super->cl);
}
for (l = osl; l; l = l->nextPtr) {
AddSuper(cl, l->cl);
}
if (osl != NULL) NsfClassListFree(osl);
return NsfObjErrType(interp, "superclass", arg, "a cycle-free graph", NULL);
}
if (osl != NULL) NsfClassListFree(osl);
assert(cl->super);
Tcl_ResetResult(interp);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* CheckVarName --
*
* Check, whether the provided name is free of namespace markup.
*
* Results:
* Tcl result code.
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static int CheckVarName(Tcl_Interp *interp, const char *varNameString) nonnull(1) nonnull(2);
static int
CheckVarName(Tcl_Interp *interp, const char *varNameString) {
assert(interp != NULL);
assert(varNameString != NULL);
/*
* We want to have a plain variable name, since we do not want to
* get interferences with namespace resolver and such. In an first
* attempt, we disallowed occurrences of "::", but we have to deal as
* well with e.g. arrayName(::x::y)
*
* TODO: more general and efficient solution to disallow e.g. a::b
* (check for :: until parens)
*/
/*if (strstr(varNameString, "::") || *varNameString == ':') {*/
if (*varNameString == ':') {
return NsfPrintError(interp, "variable name \"%s\" must not contain "
"namespace separator or colon prefix",
varNameString);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* VarExists --
*
* Check, whether the named variable exists on the specified object.
*
* Results:
* Tcl result code.
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static int VarExists(Tcl_Interp *interp, NsfObject *object, const char *name1, const char *name2, unsigned int flags)
nonnull(1) nonnull(2) nonnull(3);
static int
VarExists(Tcl_Interp *interp, NsfObject *object, const char *name1, const char *name2,
unsigned int flags) {
CallFrame frame, *framePtr = &frame;
Var *varPtr, *arrayPtr;
int result;
assert(interp != NULL);
assert(object != NULL);
assert(name1 != NULL);
Nsf_PushFrameObj(interp, object, framePtr);
if (flags & NSF_VAR_TRIGGER_TRACE) {
varPtr = TclVarTraceExists(interp, name1);
} else {
unsigned int flags = (name2 == NULL) ? TCL_PARSE_PART1 : 0;
varPtr = TclLookupVar(interp, name1, name2, flags, "access",
/*createPart1*/ 0, /*createPart2*/ 0, &arrayPtr);
}
/*
fprintf(stderr, "VarExists %s varPtr %p flags %.4x isundef %d\n",
name1,
varPtr,
flags, (varPtr != NULL) ? TclIsVarUndefined(varPtr) : NULL);
*/
result = (varPtr && ((flags & NSF_VAR_REQUIRE_DEFINED) == 0 || !TclIsVarUndefined(varPtr)));
if (result && (flags & NSF_VAR_ISARRAY) && !TclIsVarArray(varPtr)) {
result = 0;
}
Nsf_PopFrameObj(interp, framePtr);
return result;
}
#if defined(WITH_TCL_COMPILE)
# include
#endif
/*
*----------------------------------------------------------------------
* MakeProcError --
*
* Function called internally from Tcl in case the definition of the proc
* failed.
*
* Results:
* None
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static void
MakeProcError(
Tcl_Interp *interp, /* The interpreter in which the procedure was called. */
Tcl_Obj *procNameObj) /* Name of the procedure. Used for error
* messages and trace information. */
{
int overflow, limit = 60, nameLen;
const char *procName;
/*fprintf(stderr, "MakeProcError %p type %p refCount %d\n",
procNameObj, procNameObj->typePtr, procNameObj->refCount);*/
procName = Tcl_GetString(procNameObj);
nameLen = procNameObj->length;
overflow = (nameLen > limit);
Tcl_AppendObjToErrorInfo(interp, Tcl_ObjPrintf(
"\n (procedure \"%.*s%s\" line %d)",
((overflow != 0) ? limit : nameLen), procName,
((overflow != 0) ? "..." : ""), Tcl_GetErrorLine(interp)));
}
/*
*----------------------------------------------------------------------
* ByteCompiled --
*
* Function to determine wether a proc is already byted compiled or not.
*
* Results:
* 0 or 1 based on success
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static int ByteCompiled(Tcl_Interp *interp, unsigned int *flagsPtr,
Proc *procPtr, const char *procName)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static int
ByteCompiled(Tcl_Interp *interp, unsigned int *flagsPtr,
Proc *procPtr, const char *procName) {
Namespace *nsPtr;
Tcl_Obj *bodyObj;
assert(interp != NULL);
assert(flagsPtr != NULL);
assert(procPtr != NULL);
assert(procName != NULL);
nsPtr = procPtr->cmdPtr->nsPtr;
bodyObj = procPtr->bodyPtr;
if (likely(bodyObj->typePtr == Nsf_OT_byteCodeType)) {
#if defined(HAVE_TCL_COMPILE_H)
ByteCode *codePtr;
Interp *iPtr = (Interp *) interp;
/*
* When we've got bytecode, this is the check for validity. That is,
* the bytecode must be for the right interpreter (no cross-leaks!),
* the code must be from the current epoch (so subcommand compilation
* is up-to-date), the namespace must match (so variable handling
* is right) and the resolverEpoch must match (so that new shadowed
* commands and/or resolver changes are considered).
*/
codePtr = bodyObj->internalRep.otherValuePtr;
if (unlikely(((Interp *) *codePtr->interpHandle != iPtr)
|| (codePtr->compileEpoch != iPtr->compileEpoch)
|| (codePtr->nsPtr != nsPtr)
|| (codePtr->nsEpoch != nsPtr->resolverEpoch))) {
# if defined(VAR_RESOLVER_TRACE)
fprintf(stderr, "ByteCompiled bytecode not valid proc %p cmd %p method %s\n",
procPtr, procPtr->cmdPtr,
Tcl_GetCommandName(interp, (Tcl_Command)procPtr->cmdPtr));
fprintf(stderr, " %d %d %d %d\n",
((Interp *) *codePtr->interpHandle != iPtr),
(codePtr->compileEpoch != iPtr->compileEpoch),
(codePtr->nsPtr != nsPtr),
(codePtr->nsEpoch != nsPtr->resolverEpoch));
{
CompiledLocal *localPtr = procPtr->firstLocalPtr;
for (; localPtr != NULL; localPtr = localPtr->nextPtr) {
fprintf(stderr, "... local %p '%s' resolveInfo %p deleteProc %p\n",
localPtr, localPtr->name, localPtr->resolveInfo,
(localPtr->resolveInfo != NULL) ? localPtr->resolveInfo->deleteProc : NULL);
}
}
# endif
/* dummy statement for coverage analysis */
assert(1);
goto doCompilation;
}
#endif
return TCL_OK;
} else {
int result;
#if defined(HAVE_TCL_COMPILE_H)
doCompilation:
#endif
*flagsPtr |= NSF_CSC_CALL_IS_COMPILE;
result = TclProcCompileProc(interp, procPtr, bodyObj,
(Namespace *) nsPtr, "body of proc",
procName);
*flagsPtr &= ~NSF_CSC_CALL_IS_COMPILE;
return result;
}
}
/*
*----------------------------------------------------------------------
* PushProcCallFrame --
*
* Set up and push a new call frame for the procedure invocation.
* call-frame. The proc is passed via clientData.
*
* Results:
* Tcl result code
*
* Side effects:
* compiles body conditionally
*
*----------------------------------------------------------------------
*/
static int PushProcCallFrame(Proc *procPtr, Tcl_Interp *interp,
int objc, Tcl_Obj *CONST objv[],
NsfCallStackContent *cscPtr)
nonnull(1) nonnull(2) nonnull(4) nonnull(5);
static int
PushProcCallFrame(Proc *procPtr, Tcl_Interp *interp,
int objc, Tcl_Obj *CONST objv[],
NsfCallStackContent *cscPtr) {
Tcl_CallFrame *framePtr;
int result;
assert(procPtr != NULL);
assert(interp != NULL);
assert(objv != NULL);
assert(cscPtr != NULL);
/*
* Set up and push a new call frame for the new procedure invocation.
* This call frame will execute in the proc's namespace, which might be
* different than the current namespace. The proc's namespace is that of
* its command, which can change if the command is renamed from one
* namespace to another.
*/
/* TODO: we could use Tcl_PushCallFrame(), if we would allocate the tcl stack frame earlier */
result = TclPushStackFrame(interp, (Tcl_CallFrame **)&framePtr,
(Tcl_Namespace *) procPtr->cmdPtr->nsPtr,
(FRAME_IS_PROC|FRAME_IS_NSF_METHOD));
if (unlikely(result != TCL_OK)) {
return result;
}
Tcl_CallFrame_objc(framePtr) = objc;
Tcl_CallFrame_objv(framePtr) = objv;
Tcl_CallFrame_procPtr(framePtr) = procPtr;
Tcl_CallFrame_clientData(framePtr) = cscPtr;
/*fprintf(stderr, "Stack Frame %p procPtr %p compiledLocals %p firstLocal %p\n",
framePtr, procPtr, Tcl_CallFrame_compiledLocals(framePtr), procPtr->firstLocalPtr);*/
return ByteCompiled(interp, &cscPtr->flags, procPtr, ObjStr(objv[0]));
}
#include "nsfAPI.h"
/*
*----------------------------------------------------------------------
* ObjectSystemsCheckSystemMethod --
*
* Mark the specified method as (potentially) 'overloaded' in all object
* systems and declare it 'defined' in the specified object system.
*
* Results:
* Tcl result code.
*
* Side effects:
* Updates the object system structure(s).
*
*----------------------------------------------------------------------
*/
static int
ObjectSystemsCheckSystemMethod(Tcl_Interp *interp, const char *methodName, NsfObject *object, unsigned int flags) {
NsfObjectSystem *osPtr, *defOsPtr;
char firstChar;
assert(interp != NULL);
assert(object != NULL);
assert(methodName != NULL);
firstChar = *methodName;
defOsPtr = GetObjectSystem(object);
for (osPtr = RUNTIME_STATE(interp)->objectSystems; osPtr; osPtr = osPtr->nextPtr) {
int i, isRootClassMethod, flag = 0;
NsfObject *defObject;
for (i = 0; i <= NSF_s_set_idx; i++) {
Tcl_Obj *methodObj = osPtr->methods[i];
const char *methodString = (methodObj != NULL) ? ObjStr(methodObj) : NULL;
if (methodString && *methodString == firstChar && !strcmp(methodName, methodString)) {
flag = 1<rootClass->object
: &osPtr->rootMetaClass->object;
if (osPtr->handles[i] && osPtr->protected[i]) {
if (defObject == object && (flags & NSF_CMD_REDEFINE_PROTECTED_METHOD) == 0) {
return NsfPrintError(interp, "refuse to overwrite protected method %s on %s",
methodName, ObjectName(defObject));
}
}
if (osPtr->definedMethods & flag) {
/*
* If for some reason base methods become redefined (e.g. in a reload),
* do not count them as overloads.
*/
if ((isRootClassMethod == 1 && object == &defOsPtr->rootClass->object)
|| (isRootClassMethod == 0 && object == &defOsPtr->rootMetaClass->object) ) {
/*fprintf(stderr, "+++ %s %.6x NOT overloading %s.%s %s (is root %d, is meta %d)\n",
ClassName(defOsPtr->rootClass),
osPtr->overloadedMethods, ObjectName(object), methodName, Nsf_SystemMethodOpts[i],
object == &defOsPtr->rootClass->object,
object == &defOsPtr->rootMetaClass->object);*/
} else {
osPtr->overloadedMethods |= flag;
/*fprintf(stderr, "+++ %s %.6x overloading %s.%s %s (is root %d, is meta %d)\n",
ClassName(defOsPtr->rootClass),
osPtr->overloadedMethods, ObjectName(object), methodName, Nsf_SystemMethodOpts[i],
object == &defOsPtr->rootClass->object,
object == &defOsPtr->rootMetaClass->object);*/
}
}
if (osPtr == defOsPtr && ((osPtr->definedMethods & flag) == 0)) {
/*
* Mark the method as defined.
*/
osPtr->definedMethods |= flag;
/*fprintf(stderr, "+++ %s %.6x defining %s.%s %s osPtr %p defined %.8x flag %.8x handle %p\n",
ClassName(defOsPtr->rootClass), osPtr->definedMethods, ObjectName(object),
methodName, Nsf_SystemMethodOpts[i], osPtr, osPtr->definedMethods, flag,
osPtr->handles[i]);*/
/*
* If there is a method handle provided for this system method, register
* it as a fallback; unless the method is to be defined at the root
* class.
*/
if (osPtr->handles[i]) {
if (defObject != object) {
int result;
NsfLog(interp, NSF_LOG_NOTICE, "Define automatically alias %s for %s",
ObjStr(osPtr->handles[i]), Nsf_SystemMethodOpts[i]);
result = NsfMethodAliasCmd(interp, defObject, 0, methodName, 0,
ProtectionRedefine_protectedIdx, osPtr->handles[i]);
if (unlikely(result != TCL_OK)) {
/* alias definition failed */
NsfLog(interp, NSF_LOG_WARN, "Could not define alias %s for %s",
ObjStr(osPtr->handles[i]), Nsf_SystemMethodOpts[i]);
return TCL_ERROR;
}
/* alias definition suceeded */
/*
* Since the defObject is not equal to the overloaded method, the
* definition above is effectively an overload of the alias.
*/
osPtr->overloadedMethods |= flag;
/*
* Set method protection.
*/
Tcl_Obj *methodObj = Tcl_GetObjResult(interp);
Tcl_Command cmd = Tcl_GetCommandFromObj(interp, methodObj);
if (cmd != NULL) {
Tcl_Command_flags(cmd) |= NSF_CMD_CALL_PROTECTED_METHOD;
if (osPtr->protected[i]) {
Tcl_Command_flags(cmd) |= NSF_CMD_REDEFINE_PROTECTED_METHOD;
}
}
Tcl_ResetResult(interp);
}
}
}
}
return TCL_OK;
}
/*----------------------------------------------------------------------
* ParamsNew --
*
* Allocate an array of Nsf_Param structures
*
* Results:
* Pointer to allocated memory
*
* Side effects:
* Allocation of memory.
*
*----------------------------------------------------------------------
*/
static Nsf_Param *
ParamsNew(int nr) {
Nsf_Param *paramsPtr = NEW_ARRAY(Nsf_Param, nr+1);
memset(paramsPtr, 0, sizeof(Nsf_Param)*(nr+1));
return paramsPtr;
}
/*----------------------------------------------------------------------
* ParamFree --
*
* Deallocate the contents of a single Nsf_Param*
*
* Results:
* None.
*
* Side effects:
* Free the parameter definition.
*
*----------------------------------------------------------------------
*/
static void ParamFree(Nsf_Param *paramPtr) nonnull(1);
static void
ParamFree(Nsf_Param *paramPtr) {
assert(paramPtr != NULL);
/*fprintf(stderr, "ParamFree %p\n", paramPtr);*/
if (paramPtr->name != NULL) {STRING_FREE("paramPtr->name", paramPtr->name);}
if (paramPtr->nameObj != NULL) {DECR_REF_COUNT(paramPtr->nameObj);}
if (paramPtr->defaultValue != NULL) {DECR_REF_COUNT(paramPtr->defaultValue);}
if (paramPtr->converterName != NULL) {DECR_REF_COUNT2("converterNameObj", paramPtr->converterName);}
if (paramPtr->converterArg != NULL) {DECR_REF_COUNT(paramPtr->converterArg);}
if (paramPtr->paramObj != NULL) {DECR_REF_COUNT(paramPtr->paramObj);}
if (paramPtr->slotObj != NULL) {DECR_REF_COUNT(paramPtr->slotObj);}
if (paramPtr->method != NULL) {DECR_REF_COUNT(paramPtr->method);}
}
/*----------------------------------------------------------------------
* ParamsFree --
*
* Deallocate a block of multiple Nsf_Param*
*
* Results:
* None.
*
* Side effects:
* Free the parameter definition.
*
*----------------------------------------------------------------------
*/
static void ParamsFree(Nsf_Param *paramsPtr) nonnull(1);
static void
ParamsFree(Nsf_Param *paramsPtr) {
Nsf_Param *paramPtr;
assert(paramsPtr != NULL);
/*fprintf(stderr, "ParamsFree %p\n", paramsPtr);*/
for (paramPtr = paramsPtr; paramPtr->name; paramPtr++) {
ParamFree(paramPtr);
}
FREE(Nsf_Param*, paramsPtr);
}
/*----------------------------------------------------------------------
* ParamDefsGet --
*
* Obtain parameter definitions for a cmdPtr; Optionally, this command
* returns as well a flag for ProcessMethodArguments to indicate if the
* parameter have to checked always.
*
* Results:
* Parameter definitions or NULL
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
NSF_INLINE static NsfParamDefs *ParamDefsGet(Tcl_Command cmdPtr, int *checkAlwaysFlagPtr) nonnull(1);
NSF_INLINE static NsfParamDefs *
ParamDefsGet(Tcl_Command cmdPtr, int *checkAlwaysFlagPtr) {
assert(cmdPtr != NULL);
if (likely(Tcl_Command_deleteProc(cmdPtr) == NsfProcDeleteProc)) {
NsfProcContext *ctx = (NsfProcContext *)Tcl_Command_deleteData(cmdPtr);
if (checkAlwaysFlagPtr != NULL) { *checkAlwaysFlagPtr = ctx->checkAlwaysFlag;}
return ctx->paramDefs;
}
return NULL;
}
/*----------------------------------------------------------------------
* NsfParamDefsFilter --
*
* Process a list of ParamDefs and return a subset of it matching the
* provided pattern. If no parameter name matches the pattern, NULL is
* returned. The client is supposed to FREE the returned parameter list
* (entries are shared, a free of the returned pointer is sufficient).
*
* Results:
* Parameter definitions or NULL
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static Nsf_Param *NsfParamDefsFilter(Tcl_Interp *interp, Nsf_Param const *paramsPtr, const char *pattern)
nonnull(1) nonnull(2) nonnull(3);
static Nsf_Param *
NsfParamDefsFilter(Tcl_Interp *interp, Nsf_Param const *paramsPtr, const char *pattern) {
static Nsf_Param *paramList = NULL;
Nsf_Param const *pPtr;
int maxParams, nrMatchingParams;
/*
* If a single parameter or pattern name is given, we construct a filtered
* parameter list on the fly and we return it
*/
/*
* Count the parameters
*/
for (pPtr = paramsPtr, maxParams = 0; pPtr->name; pPtr++, maxParams++);
/*
* Allocate the number of potentional matches
*/
paramList = ParamsNew(maxParams);
for (pPtr = paramsPtr, nrMatchingParams = 0; pPtr->name; pPtr++) {
if (Tcl_StringMatch( ObjStr(pPtr->nameObj), pattern)) {
paramList[nrMatchingParams] = *pPtr;
nrMatchingParams++;
}
}
if (nrMatchingParams == 0) {
/*
* The named parameter were NOT found, so return NULL
*/
FREE(Nsf_Param*, paramList);
paramList = NULL;
}
return paramList;
}
/*----------------------------------------------------------------------
* NsfParamDefsNonposLookup --
*
* Process a list of ParamDefs look for a nonpos args. If there is no exact
* match, look for an abbreviated match having at least
* NSF_ABBREV_MIN_CHARS leading chars which are identical.
*
* Results:
* Parameter definition or NULL
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int NsfParamDefsNonposLookup(Tcl_Interp *interp, const char *nameString,
Nsf_Param const *paramsPtr, Nsf_Param const **paramPtrPtr)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static int
NsfParamDefsNonposLookup(Tcl_Interp *interp, const char *nameString,
Nsf_Param const *paramsPtr, Nsf_Param const **paramPtrPtr) {
Nsf_Param const *paramPtr;
char ch1;
int length;
assert(interp != NULL);
assert(nameString != NULL);
assert(paramsPtr != NULL);
assert(paramPtrPtr != NULL);
/*
* The provided paramsPtr must point to a block starting with a nonpos arg.
*/
assert(paramsPtr->name);
assert(*paramsPtr->name == '-');
/*
* The provided nameString starts as well with a leading dash.
*/
assert(*nameString == '-');
ch1 = nameString[2];
for (paramPtr = paramsPtr; likely(paramPtr->name != NULL) && *paramPtr->name == '-'; paramPtr++) {
if (unlikely(paramPtr->flags & NSF_ARG_NOCONFIG)) continue;
if (ch1 == paramPtr->name[2]
&& strcmp(nameString, paramPtr->name) == 0) {
*paramPtrPtr = paramPtr;
return TCL_OK;
}
}
length = strlen(nameString);
if (length >= NSF_ABBREV_MIN_CHARS) {
for (paramPtr = paramsPtr; likely(paramPtr->name != NULL) && *paramPtr->name == '-'; paramPtr++) {
if (unlikely(paramPtr->flags & NSF_ARG_NOCONFIG)) continue;
if (ch1 == paramPtr->name[2]
&& strncmp(nameString, paramPtr->name, length) == 0) {
Nsf_Param const *pPtr;
/* fprintf(stderr, "... <%s> is an abbrev of <%s>\n", nameString, paramPtr->name); */
/*
* Check, if the abbreviation is unique
*/
for (pPtr = paramPtr + 1; likely(pPtr->name != NULL) && *pPtr->name == '-'; pPtr++) {
if (unlikely(pPtr->flags & NSF_ARG_NOCONFIG)) continue;
if (ch1 == pPtr->name[2]
&& strncmp(nameString, pPtr->name, length) == 0) {
/*
* The abbreviation is not unique
*/
*paramPtrPtr = NULL;
return NsfPrintError(interp, "the provided argument %s is an abbreviation for %s and %s",
nameString, paramPtr->name, pPtr->name);
}
}
/*
* The abbreviation is unique
*/
*paramPtrPtr = paramPtr;
return TCL_OK;
}
}
}
*paramPtrPtr = NULL;
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* NsfProcDeleteProc --
*
* FreeProc for procs with associated parameter definitions.
*
* Results:
* None.
*
* Side effects:
* Freeing memory.
*
*----------------------------------------------------------------------
*/
static void
NsfProcDeleteProc(ClientData clientData) {
NsfProcContext *ctxPtr;
assert(clientData != NULL);
ctxPtr = (NsfProcContext *)clientData;
if (ctxPtr->oldDeleteProc != NULL) {
(*ctxPtr->oldDeleteProc)(ctxPtr->oldDeleteData);
}
if (ctxPtr->paramDefs != NULL) {
/*fprintf(stderr, "free ParamDefs %p\n", ctxPtr->paramDefs);*/
ParamDefsRefCountDecr(ctxPtr->paramDefs);
}
/*fprintf(stderr, "free %p\n", ctxPtr);*/
FREE(NsfProcContext, ctxPtr);
}
/*
*----------------------------------------------------------------------
* ParamDefsStore --
*
* Store the provided parameter definitions in the provided
* command. It stores a new deleteProc which will call the original
* delete proc automatically.
*
* Results:
* Tcl result code.
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static int ParamDefsStore(Tcl_Interp *interp, Tcl_Command cmd, NsfParamDefs *paramDefs, int checkAlwaysFlag)
nonnull(1) nonnull(2);
static int
ParamDefsStore(Tcl_Interp *interp, Tcl_Command cmd, NsfParamDefs *paramDefs, int checkAlwaysFlag) {
Command *cmdPtr;
assert(interp != NULL);
assert(cmd != NULL);
cmdPtr = (Command *)cmd;
/*
* TODO This function might store empty paramDefs. needed?
*/
if (cmdPtr->deleteProc != NsfProcDeleteProc) {
NsfProcContext *ctxPtr = NEW(NsfProcContext);
/*fprintf(stderr, "ParamDefsStore %p (%s) replace deleteProc %p by %p\n",
paramDefs, Tcl_GetCommandName(interp, cmd),
cmdPtr->deleteProc, NsfProcDeleteProc);*/
ctxPtr->oldDeleteData = (Proc *)cmdPtr->deleteData;
ctxPtr->oldDeleteProc = cmdPtr->deleteProc;
cmdPtr->deleteProc = NsfProcDeleteProc;
ctxPtr->paramDefs = paramDefs;
ctxPtr->checkAlwaysFlag = checkAlwaysFlag;
cmdPtr->deleteData = ctxPtr;
return TCL_OK;
} else {
/*fprintf(stderr, "ParamDefsStore cmd %p has already NsfProcDeleteProc deleteData %p\n",
cmd, cmdPtr->deleteData);*/
if (cmdPtr->deleteData != NULL) {
NsfProcContext *ctxPtr = cmdPtr->deleteData;
assert(ctxPtr->paramDefs == NULL);
ctxPtr->paramDefs = paramDefs;
}
}
return TCL_ERROR;
}
/*
*----------------------------------------------------------------------
* ParamDefsNew --
*
* Allocate a new paramDefs structure and initialize it with zeros. The
* allocated structure should be freed with ParamDefsFree().
*
* Results:
* pointer to paramDefs structure
*
* Side effects:
* Allocating memory
*
*----------------------------------------------------------------------
*/
static NsfParamDefs *
ParamDefsNew() {
NsfParamDefs *paramDefs;
static NsfMutex serialMutex = 0;
static int serial = 0;
paramDefs = NEW(NsfParamDefs);
memset(paramDefs, 0, sizeof(NsfParamDefs));
/* We could keep the serial as well in thread local storage */
NsfMutexLock(&serialMutex);
paramDefs->serial = serial++;
NsfMutexUnlock(&serialMutex);
/*fprintf(stderr, "ParamDefsNew %p\n", paramDefs);*/
return paramDefs;
}
/*
*----------------------------------------------------------------------
* ParamDefsFree --
*
* Actually free the parameter definitions. Since the parameter definitions
* are ref-counted, this function should be just called via
* ParamDefsRefCountDecr.
*
* Results:
* None.
*
* Side effects:
* Free the parameter definitions.
*
*----------------------------------------------------------------------
*/
static void ParamDefsFree(NsfParamDefs *paramDefs) nonnull(1);
static void
ParamDefsFree(NsfParamDefs *paramDefs) {
/*fprintf(stderr, "ParamDefsFree %p slotObj %p returns %p\n",
paramDefs, paramDefs->slotObj, paramDefs->returns);*/
assert(paramDefs != NULL);
if (paramDefs->paramsPtr != NULL) {
ParamsFree(paramDefs->paramsPtr);
}
if (paramDefs->returns != NULL) {DECR_REF_COUNT2("paramDefsObj", paramDefs->returns);}
FREE(NsfParamDefs, paramDefs);
}
/*
*----------------------------------------------------------------------
* ParamDefsRefCountIncr --
* ParamDefsRefCountDecr --
*
* Perform book keeping on the parameter definitions. RefCounting is
* necessary, since it might be possible that during the processing of the
* e.g. object parameters, these might be redefined (when an object
* parameter calls a method, redefining the
* structures). ParamDefsRefCountDecr() is responsible for actually freeing
* the structure.
*
* Results:
* None.
*
* Side effects:
* No direct.
*
*----------------------------------------------------------------------
*/
static void
ParamDefsRefCountIncr(NsfParamDefs *paramDefs) {
assert(paramDefs != NULL);
paramDefs->refCount ++;
}
static void
ParamDefsRefCountDecr(NsfParamDefs *paramDefs) {
assert(paramDefs != NULL);
paramDefs->refCount --;
if (paramDefs->refCount < 1) {
ParamDefsFree(paramDefs);
}
}
/*
*----------------------------------------------------------------------
* ParamDefsFormatOption --
*
* Append a parameter option to the nameStringObj representing the
* syntax of the parameter definition.
*
* Results:
* None.
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static void ParamDefsFormatOption(Tcl_Obj *nameStringObj, const char *option,
int *colonWritten, int *firstOption)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static void
ParamDefsFormatOption(Tcl_Obj *nameStringObj, const char *option,
int *colonWritten, int *firstOption) {
assert(nameStringObj != NULL);
assert(option != NULL);
assert(colonWritten != NULL);
assert(firstOption != NULL);
if (!*colonWritten) {
Tcl_AppendLimitedToObj(nameStringObj, ":", 1, INT_MAX, NULL);
*colonWritten = 1;
}
if (*firstOption) {
*firstOption = 0;
} else {
Tcl_AppendLimitedToObj(nameStringObj, ",", 1, INT_MAX, NULL);
}
Tcl_AppendLimitedToObj(nameStringObj, option, -1, INT_MAX, NULL);
}
/*
*----------------------------------------------------------------------
* ParamDefsFormat --
*
* Produce a Tcl_Obj representing a single parameter in the syntax
* of the parameter definition.
*
* Results:
* Tcl_Obj
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static Tcl_Obj *ParamDefsFormat(Tcl_Interp *interp, Nsf_Param const *paramsPtr, NsfObject *contextObject, const char *pattern)
nonnull(1) nonnull(2) returns_nonnull;
static int ParamsDefMatchPattern(Nsf_Param const *paramsPtr, const char *pattern) {
if (paramsPtr->nameObj != NULL) {
return Tcl_StringMatch(ObjStr(paramsPtr->nameObj), pattern);
}
return Tcl_StringMatch(paramsPtr->name, pattern);
}
static Tcl_Obj *
ParamDefsFormat(Tcl_Interp *interp, Nsf_Param const *paramsPtr, NsfObject *contextObject, const char *pattern) {
int first, colonWritten;
Tcl_Obj *listObj = Tcl_NewListObj(0, NULL), *innerListObj, *nameStringObj;
assert(interp != NULL);
assert(paramsPtr != NULL);
INCR_REF_COUNT2("paramDefsObj", listObj);
for (; likely(paramsPtr->name != NULL); paramsPtr++) {
if (paramsPtr->flags & NSF_ARG_NOCONFIG) {
continue;
}
if (paramsPtr->paramObj != NULL) {
if (pattern && !ParamsDefMatchPattern(paramsPtr, pattern)) continue;
innerListObj = paramsPtr->paramObj;
} else {
/*
* We need this part only for C-defined parameter definitions, defined
* via genTclAPI.
*
* TODO: we could streamline this by defining as well C-API via the same
* syntax as for accepted for tcl obj types "nsfParam"
*/
int isNonpos = *paramsPtr->name == '-';
int outputRequired = (isNonpos && (paramsPtr->flags & NSF_ARG_REQUIRED));
int outputOptional = (!isNonpos && !(paramsPtr->flags & NSF_ARG_REQUIRED)
&& !paramsPtr->defaultValue &&
paramsPtr->converter != ConvertToNothing);
first = 1;
colonWritten = 0;
if (NsfParamDefsAppendVirtual(interp, listObj, paramsPtr, contextObject, pattern, ParamDefsFormat)) {
continue;
}
if (pattern && !ParamsDefMatchPattern(paramsPtr, pattern)) continue;
nameStringObj = Tcl_NewStringObj(paramsPtr->name, -1);
if (paramsPtr->type != NULL) {
ParamDefsFormatOption(nameStringObj, paramsPtr->type, &colonWritten, &first);
} else if (isNonpos && paramsPtr->nrArgs == 0) {
ParamDefsFormatOption(nameStringObj, "switch", &colonWritten, &first);
}
if (outputRequired != 0) {
ParamDefsFormatOption(nameStringObj, "required", &colonWritten, &first);
} else if (outputOptional != 0) {
ParamDefsFormatOption(nameStringObj, "optional", &colonWritten, &first);
}
if ((paramsPtr->flags & NSF_ARG_SUBST_DEFAULT)) {
ParamDefsFormatOption(nameStringObj, "substdefault", &colonWritten, &first);
}
if ((paramsPtr->flags & NSF_ARG_ALLOW_EMPTY) || (paramsPtr->flags & NSF_ARG_MULTIVALUED)) {
char option[10] = "....";
option[0] = (paramsPtr->flags & NSF_ARG_ALLOW_EMPTY) ? '0' : '1';
option[3] = (paramsPtr->flags & NSF_ARG_MULTIVALUED) ? '*' : '1';
ParamDefsFormatOption(nameStringObj, option, &colonWritten, &first);
}
if ((paramsPtr->flags & NSF_ARG_IS_CONVERTER)) {
ParamDefsFormatOption(nameStringObj, "convert", &colonWritten, &first);
}
if ((paramsPtr->flags & NSF_ARG_INITCMD)) {
ParamDefsFormatOption(nameStringObj, "initcmd", &colonWritten, &first);
} else if ((paramsPtr->flags & NSF_ARG_CMD)) {
ParamDefsFormatOption(nameStringObj, "cmd", &colonWritten, &first);
} else if ((paramsPtr->flags & NSF_ARG_ALIAS)) {
ParamDefsFormatOption(nameStringObj, "alias", &colonWritten, &first);
} else if ((paramsPtr->flags & NSF_ARG_FORWARD)) {
ParamDefsFormatOption(nameStringObj, "forward", &colonWritten, &first);
} else if ((paramsPtr->flags & NSF_ARG_NOARG)) {
ParamDefsFormatOption(nameStringObj, "noarg", &colonWritten, &first);
} else if ((paramsPtr->flags & NSF_ARG_NOCONFIG)) {
ParamDefsFormatOption(nameStringObj, "noconfig", &colonWritten, &first);
}
innerListObj = Tcl_NewListObj(0, NULL);
Tcl_ListObjAppendElement(interp, innerListObj, nameStringObj);
if (paramsPtr->defaultValue != NULL) {
Tcl_ListObjAppendElement(interp, innerListObj, paramsPtr->defaultValue);
}
}
Tcl_ListObjAppendElement(interp, listObj, innerListObj);
}
return listObj;
}
/*
*----------------------------------------------------------------------
* ParamDefsList --
*
* Produce a Tcl_ListObj containing the list of the parameters
* based on a parameter structure.
*
* Results:
* Tcl_Obj
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static Tcl_Obj *ParamDefsList(Tcl_Interp *interp, Nsf_Param const *paramsPtr, NsfObject *contextObject, const char *pattern)
nonnull(1) nonnull(2) returns_nonnull;
static Tcl_Obj *
ParamDefsList(Tcl_Interp *interp, Nsf_Param const *paramsPtr, NsfObject *contextObject, const char *pattern) {
Tcl_Obj *listObj = Tcl_NewListObj(0, NULL);
assert(interp != NULL);
assert(paramsPtr != NULL);
INCR_REF_COUNT2("paramDefsObj", listObj);
for (; likely(paramsPtr->name != NULL); paramsPtr++) {
if ((paramsPtr->flags & NSF_ARG_NOCONFIG) != 0) continue;
if (NsfParamDefsAppendVirtual(interp, listObj, paramsPtr, contextObject, pattern, ParamDefsList)) continue;
Tcl_ListObjAppendElement(interp, listObj, Tcl_NewStringObj(paramsPtr->name, -1));
}
return listObj;
}
/*
*----------------------------------------------------------------------
* ParamDefsNames --
*
* Produce a Tcl_ListObj containing the names of the parameters
* based on a parameter structure.
*
* Results:
* Tcl_Obj
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static Tcl_Obj * ParamDefsNames(Tcl_Interp *interp, Nsf_Param const *paramsPtr, NsfObject *contextObject, const char *pattern)
nonnull(1) nonnull(2) returns_nonnull;
static Tcl_Obj *
ParamDefsNames(Tcl_Interp *interp, Nsf_Param const *paramsPtr, NsfObject *contextObject, const char *pattern) {
Tcl_Obj *listObj = Tcl_NewListObj(0, NULL), *obj;
assert(interp != NULL);
assert(paramsPtr != NULL);
INCR_REF_COUNT2("paramDefsObj", listObj);
for (; likely(paramsPtr->name != NULL); paramsPtr++) {
if ((paramsPtr->flags & NSF_ARG_NOCONFIG) != 0) continue;
if (NsfParamDefsAppendVirtual(interp, listObj, paramsPtr, contextObject, pattern, ParamDefsNames)) continue;
obj = (paramsPtr->nameObj != NULL) ? paramsPtr->nameObj : Tcl_NewStringObj(paramsPtr->name,-1);
if (pattern && !Tcl_StringMatch(ObjStr(obj), pattern)) continue;
Tcl_ListObjAppendElement(interp, listObj, obj);
}
return listObj;
}
/*
*----------------------------------------------------------------------
* ParamGetType --
*
* Obtain the type of a single parameter and return it as a string.
*
* Results:
* Type of the parameter in form of a string
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static const char *ParamGetType(Nsf_Param const *paramPtr) nonnull(1) returns_nonnull;
static const char *
ParamGetType(Nsf_Param const *paramPtr) {
const char *result = "value";
assert(paramPtr != NULL);
if (paramPtr->type != NULL) {
if (paramPtr->converter == ConvertViaCmd) {
result = paramPtr->type + 5;
} else if (paramPtr->converter == Nsf_ConvertToClass &&
(paramPtr->flags & (NSF_ARG_BASECLASS|NSF_ARG_METACLASS)) ) {
if (paramPtr->flags & NSF_ARG_BASECLASS) {
result = "baseclass";
} else {
result = "metaclass";
}
} else if (strcmp(paramPtr->type, "stringtype") == 0) {
if (paramPtr->converterArg != NULL) {
result = ObjStr(paramPtr->converterArg);
}
} else {
result = paramPtr->type;
}
}
return result;
}
/*
*----------------------------------------------------------------------
* ParamGetDomain --
*
* Obtain the domain of a single parameter and return it as a
* string. The domain is an approximate type used in the parameter
* syntax.
*
* Results:
* Domain of the parameter in form of a string
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static const char * ParamGetDomain(Nsf_Param const *paramPtr) nonnull(1) returns_nonnull;
static const char *
ParamGetDomain(Nsf_Param const *paramPtr) {
const char *result = "value";
assert(paramPtr != NULL);
if ((paramPtr->flags & NSF_ARG_IS_ENUMERATION)) {
return Nsf_EnumerationTypeGetDomain(paramPtr->converter);
} else {
result = ParamGetType(paramPtr);
}
return result;
}
/*
*----------------------------------------------------------------------
* NsfParamDefsSyntaxOne --
*
* Appends the formatted parameter (provided as 2nd argument) to the
* content of the first argument.
*
* Results:
* None
*
* Side effects:
* Appending to first argument.
*
*----------------------------------------------------------------------
*/
static void NsfParamDefsSyntaxOne(Tcl_Obj *argStringObj, Nsf_Param const *pPtr)
nonnull(1) nonnull(2);
static void
NsfParamDefsSyntaxOne(Tcl_Obj *argStringObj, Nsf_Param const *pPtr) {
assert(argStringObj != NULL);
assert(pPtr != NULL);
if (pPtr->nrArgs > 0 && *pPtr->name == '-') {
Tcl_AppendLimitedToObj(argStringObj, pPtr->name, -1, INT_MAX, NULL);
Tcl_AppendLimitedToObj(argStringObj, " ", 1, INT_MAX, NULL);
if ((pPtr->flags & NSF_ARG_IS_ENUMERATION)) {
Tcl_AppendLimitedToObj(argStringObj, ParamGetDomain(pPtr), -1, INT_MAX, NULL);
if (pPtr->flags & NSF_ARG_MULTIVALUED) {
Tcl_AppendLimitedToObj(argStringObj, " ...", 4, INT_MAX, NULL);
}
} else {
Tcl_AppendLimitedToObj(argStringObj, "/", 1, INT_MAX, NULL);
Tcl_AppendLimitedToObj(argStringObj, ParamGetDomain(pPtr), -1, INT_MAX, NULL);
if (pPtr->flags & NSF_ARG_MULTIVALUED) {
Tcl_AppendLimitedToObj(argStringObj, " ...", 4, INT_MAX, NULL);
}
Tcl_AppendLimitedToObj(argStringObj, "/", 1, INT_MAX, NULL);
}
} else if (*pPtr->name != '-') {
Tcl_AppendLimitedToObj(argStringObj, "/", 1, INT_MAX, NULL);
Tcl_AppendLimitedToObj(argStringObj, pPtr->name, -1, INT_MAX, NULL);
Tcl_AppendLimitedToObj(argStringObj, "/", 1, INT_MAX, NULL);
} else {
Tcl_AppendLimitedToObj(argStringObj, pPtr->name, -1, INT_MAX, NULL);
}
}
/*
* NsfParamDefsVirtualFormat --
*
* This function is called, when we know we can resolve a virtual argument
* against the context object. In such cases, obtain the resolved parsed
* params and call the formatter.
*
* Results:
* Standard Tcl result code.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static Tcl_Obj *
NsfParamDefsVirtualFormat(Tcl_Interp *interp, Nsf_Param const *pPtr, NsfObject *contextObject, const char *pattern,
NsfFormatFunction formatFunction) {
NsfParsedParam parsedParam;
int result;
assert(interp != NULL);
assert(pPtr != NULL);
assert(pPtr->type != NULL);
assert(contextObject != NULL);
assert(formatFunction != NULL);
if (strcmp(pPtr->type, "virtualobjectargs") == 0) {
result = GetObjectParameterDefinition(interp, NsfGlobalObjs[NSF_EMPTY], contextObject, NULL, &parsedParam);
} else if (NsfObjectIsClass(contextObject)) {
result = GetObjectParameterDefinition(interp, NsfGlobalObjs[NSF_EMPTY], NULL, (NsfClass *)contextObject, &parsedParam);
} else {
NsfLog(interp, NSF_LOG_WARN, "virtual args: provided context is not a class <%s>", ObjectName(contextObject));
result = TCL_ERROR;
}
if (result == TCL_OK && parsedParam.paramDefs != NULL) {
return (*formatFunction)(interp, parsedParam.paramDefs->paramsPtr, contextObject, pattern);
}
return NULL;
}
/*
*----------------------------------------------------------------------
* NsfParamDefsAppendVirtual --
*
* Check for the given paramsPtr wether this is a virtual parameter and if
* possible, resolve it and append the formatted content to the Tcl_Obj.
*
* Results:
* Boolean value for success
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int
NsfParamDefsAppendVirtual(Tcl_Interp *interp, Tcl_Obj *listObj,
Nsf_Param const *paramsPtr, NsfObject *contextObject,
const char *pattern, NsfFormatFunction formatFunction) {
assert(interp != NULL);
assert(listObj != NULL);
assert(paramsPtr != NULL);
assert(paramsPtr->name);
assert(formatFunction != NULL);
if (paramsPtr->converter == ConvertToNothing && strcmp(paramsPtr->name, "args") == 0) {
if (contextObject != NULL && paramsPtr->type && strncmp(paramsPtr->type, "virtual", 7) == 0) {
Tcl_Obj *formattedObj = NsfParamDefsVirtualFormat(interp, paramsPtr, contextObject, pattern, formatFunction);
if (formattedObj != NULL) {
Tcl_ListObjAppendList(interp, listObj, formattedObj);
DECR_REF_COUNT2("paramDefsObj", formattedObj);
return 1;
}
}
}
return 0;
}
/*
*----------------------------------------------------------------------
* NsfParamDefsSyntax --
*
* Return the parameter definitions of a sequence of parameters in
* the form of the "parametersyntax", inspired by the Tcl manual
* pages.
*
* Results:
* Tcl_Obj containing the parameter syntax
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
Tcl_Obj *NsfParamDefsSyntax(Tcl_Interp *interp, Nsf_Param const *paramsPtr, NsfObject *contextObject, const char *pattern)
nonnull(1) nonnull(2) returns_nonnull;
Tcl_Obj *
NsfParamDefsSyntax(Tcl_Interp *interp, Nsf_Param const *paramsPtr, NsfObject *contextObject, const char *pattern) {
Tcl_Obj *argStringObj = Tcl_NewObj();
Nsf_Param const *pPtr;
int needSpace = 0;
assert(interp != NULL);
assert(paramsPtr != NULL);
INCR_REF_COUNT2("paramDefsObj", argStringObj);
for (pPtr = paramsPtr; pPtr->name; pPtr++) {
if ((pPtr->flags & NSF_ARG_NOCONFIG)) {
/*
* Don't output non-configurable parameters
*/
continue;
}
if (pPtr != paramsPtr) {
/*
* Don't output non-consuming parameters (i.e. positional, and no args)
*/
if (*pPtr->name != '-' && pPtr->nrArgs == 0) {
continue;
}
}
if (pPtr->converter == ConvertToNothing && strcmp(pPtr->name, "args") == 0) {
int argsResolved = 0;
if (contextObject != NULL && pPtr->type && strncmp(pPtr->type, "virtual", 7) == 0) {
Tcl_Obj *formattedObj = NsfParamDefsVirtualFormat(interp, pPtr, contextObject,
pattern, NsfParamDefsSyntax);
if (formattedObj != NULL) {
argsResolved = 1;
if (needSpace != 0) Tcl_AppendLimitedToObj(argStringObj, " ", 1, INT_MAX, NULL);
Tcl_AppendObjToObj(argStringObj, formattedObj);
DECR_REF_COUNT2("paramDefsObj", formattedObj);
}
}
if (argsResolved == 0) {
if (pattern && !ParamsDefMatchPattern(pPtr, pattern)) continue;
if (needSpace != 0) Tcl_AppendLimitedToObj(argStringObj, " ", 1, INT_MAX, NULL);
Tcl_AppendLimitedToObj(argStringObj, "?/arg .../?", 11, INT_MAX, NULL);
}
} else if (pPtr->flags & NSF_ARG_REQUIRED) {
if (pattern && !ParamsDefMatchPattern(pPtr, pattern)) continue;
if (needSpace != 0) Tcl_AppendLimitedToObj(argStringObj, " ", 1, INT_MAX, NULL);
if ((pPtr->flags & NSF_ARG_IS_ENUMERATION)) {
Tcl_AppendLimitedToObj(argStringObj, Nsf_EnumerationTypeGetDomain(pPtr->converter), -1, INT_MAX, NULL);
} else {
NsfParamDefsSyntaxOne(argStringObj, pPtr);
}
} else {
if (pattern && !ParamsDefMatchPattern(pPtr, pattern)) continue;
if (needSpace != 0) Tcl_AppendLimitedToObj(argStringObj, " ", 1, INT_MAX, NULL);
Tcl_AppendLimitedToObj(argStringObj, "?", 1, INT_MAX, NULL);
NsfParamDefsSyntaxOne(argStringObj, pPtr);
Tcl_AppendLimitedToObj(argStringObj, "?", 1, INT_MAX, NULL);
}
needSpace = 1;
}
/* caller has to decr */
return argStringObj;
}
/*
*----------------------------------------------------------------------
* ParsedParamFree --
*
* Free the provided information of the parsed parameters.
*
* Results:
* None.
*
* Side effects:
* Freed Memory.
*
*----------------------------------------------------------------------
*/
static void
ParsedParamFree(NsfParsedParam *parsedParamPtr) {
assert(parsedParamPtr != NULL);
/*fprintf(stderr, "ParsedParamFree %p, npargs %p\n",
parsedParamPtr, parsedParamPtr->paramDefs);*/
if (parsedParamPtr->paramDefs != NULL) {
ParamDefsRefCountDecr(parsedParamPtr->paramDefs);
}
FREE(NsfParsedParam, parsedParamPtr);
}
/*
* method dispatch
*/
/*
*----------------------------------------------------------------------
* ProcMethodDispatchFinalize --
*
* Finalization function for ProcMethodDispatch which executes
* scripted methods. Essentially it handles post-assertions and
* frees per-invocation memory. The function was developed for NRE
* enabled Tcl versions but is used in the same way for non-NRE
* enabled versions.
*
* Results:
* Tcl result code.
*
* Side effects:
* indirect effects by calling Tcl code
*
*----------------------------------------------------------------------
*/
static int ProcMethodDispatchFinalize(ClientData data[], Tcl_Interp *interp, int result) nonnull(1) nonnull(2);
static int
ProcMethodDispatchFinalize(ClientData data[], Tcl_Interp *interp, int result) {
ParseContext *pcPtr = data[0];
/*const char *methodName = data[2];*/
#if defined(NSF_WITH_ASSERTIONS) || defined(NRE)
NsfCallStackContent *cscPtr = data[1];
#endif
#if defined(NSF_WITH_ASSERTIONS)
NsfObject *object = cscPtr->self;
NsfObjectOpt *opt = object->opt;
#endif
assert(data != NULL);
assert(interp != NULL);
/*fprintf(stderr, "ProcMethodDispatchFinalize %s %s flags %.6x isNRE %d pcPtr %p result %d\n",
ObjectName(object), methodName,
cscPtr->flags, (cscPtr->flags & NSF_CSC_CALL_IS_NRE), pcPtr, result);*/
#if defined(NSF_WITH_ASSERTIONS)
if (unlikely(opt && object->teardown && (opt->checkoptions & CHECK_POST))
&& likely(result == TCL_OK)) {
int rc = AssertionCheck(interp, object, cscPtr->cl, data[2], CHECK_POST);
if (rc != TCL_OK) {
result = rc;
}
}
#endif
#if defined(NRE)
if (likely(cscPtr->flags & NSF_CSC_CALL_IS_NRE)) {
if (likely(pcPtr != NULL)) {
ParseContextRelease(pcPtr);
NsfTclStackFree(interp, pcPtr, "release parse context");
}
result = ObjectDispatchFinalize(interp, cscPtr, result /*, "NRE" , methodName*/);
CscFinish(interp, cscPtr, result, "scripted finalize");
}
#else
if (unlikely(pcPtr != NULL)) {
ParseContextRelease(pcPtr);
}
#endif
return result;
}
/*
*----------------------------------------------------------------------
* ProcDispatchFinalize --
*
* Finalization function for nsf::proc. Simplified version of
* ProcMethodDispatchFinalize().
*
* Results:
* Tcl result code.
*
* Side effects:
* indirect effects by calling Tcl code
*
*----------------------------------------------------------------------
*/
static int ProcDispatchFinalize(ClientData data[], Tcl_Interp *interp, int result) nonnull(1) nonnull(2);
static int
ProcDispatchFinalize(ClientData data[], Tcl_Interp *interp, int result) {
ParseContext *pcPtr = data[1];
/*const char *methodName = data[0];
fprintf(stderr, "ProcDispatchFinalize of method %s\n", methodName);*/
assert(data != NULL);
assert(interp != NULL);
# if defined(NSF_PROFILE)
long int startUsec = (long int)data[2];
long int startSec = (long int)data[3];
char *methodName = data[0];
NsfRuntimeState *rst = RUNTIME_STATE(interp);
if (rst->doProfile != 0) {
NsfProfileRecordProcData(interp, methodName, startSec, startUsec);
}
# endif
ParseContextRelease(pcPtr);
NsfTclStackFree(interp, pcPtr, "nsf::proc dispatch finalize release parse context");
return result;
}
/*
*----------------------------------------------------------------------
* ProcMethodDispatch --
*
* Invoke a scripted method (with assertion checking and filters).
*
* Results:
* Tcl result code.
*
* Side effects:
* Indirect effects by calling Tcl code
*
*----------------------------------------------------------------------
*/
static int ProcMethodDispatch(ClientData cp, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[],
const char *methodName, NsfObject *object, NsfClass *cl, Tcl_Command cmdPtr,
NsfCallStackContent *cscPtr)
nonnull(1) nonnull(2) nonnull(4) nonnull(5) nonnull(6) nonnull(8) nonnull(9);
static int
ProcMethodDispatch(ClientData cp, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[],
const char *methodName, NsfObject *object, NsfClass *cl, Tcl_Command cmdPtr,
NsfCallStackContent *cscPtr) {
int result, releasePc = 0, checkAlwaysFlag = 0;
NsfParamDefs *paramDefs;
#if defined(NSF_WITH_ASSERTIONS)
NsfObjectOpt *opt = object->opt;
#endif
#if defined(NRE)
ParseContext *pcPtr = NULL;
#else
ParseContext pc, *pcPtr = &pc;
#endif
assert(cp != NULL);
assert(interp != NULL);
assert(objv != NULL);
assert(methodName != NULL);
assert(cmdPtr != NULL);
assert(cscPtr != NULL);
assert(object != NULL);
assert(object->teardown);
#if defined(NRE)
/*fprintf(stderr, "ProcMethodDispatch cmd %s\n", Tcl_GetCommandName(interp, cmdPtr));*/
assert(cscPtr->flags & NSF_CSC_CALL_IS_NRE);
#endif
/*
* If this is a filter, check whether its guard applies,
* if not: just step forward to the next filter
*/
if (unlikely(cscPtr->frameType == NSF_CSC_TYPE_ACTIVE_FILTER)) {
NsfCmdList *cmdList;
/*
* seek cmd in obj's filterOrder
*/
assert(object->flags & NSF_FILTER_ORDER_VALID);
/* otherwise: FilterComputeDefined(interp, object);*/
for (cmdList = object->filterOrder; cmdList && cmdList->cmdPtr != cmdPtr; cmdList = cmdList->nextPtr);
if (cmdList != NULL) {
/*
* A filter was found, check whether it has a guard.
*/
if (cmdList->clientData != NULL) {
result = GuardCall(object, interp, cmdList->clientData, cscPtr);
} else {
result = TCL_OK;
}
if (unlikely(result != TCL_OK)) {
/*fprintf(stderr, "Filter GuardCall in invokeProc returned %d\n", result);*/
if (result != TCL_ERROR) {
/*
* The guard failed (but no error), and we call "next".
* Since we may not be in a method with already provided
* arguments, we call next with the actual arguments and
* perform no argument substitution.
*
* The call stack content is not jet pushed to the Tcl
* stack, we pass it already to search-and-invoke.
*/
/*fprintf(stderr, "... calling nextmethod cscPtr %p\n", cscPtr);*/
result = NextSearchAndInvoke(interp, methodName, objc, objv, cscPtr, 0);
/*fprintf(stderr, "... after nextmethod result %d\n", result);*/
}
/*
* Next might have succeeded or not, but we are done. In the
* NRE-case, we need a CscFinish for all return codes.
*/
#if defined(NRE)
CscFinish(interp, cscPtr, result, "guard failed");
#endif
return result;
}
}
}
#if defined(NSF_WITH_ASSERTIONS)
if (unlikely(opt && (opt->checkoptions & CHECK_PRE)) &&
(result = AssertionCheck(interp, object, cl, methodName, CHECK_PRE)) == TCL_ERROR) {
goto prep_done;
}
#endif
/*
* If the method to be invoked has paramDefs, we have to call the
* argument parser with the argument definitions obtained from the
* proc context from the cmdPtr.
*/
paramDefs = ParamDefsGet(cmdPtr, &checkAlwaysFlag);
if (paramDefs && paramDefs->paramsPtr) {
#if defined(NRE)
pcPtr = (ParseContext *) NsfTclStackAlloc(interp, sizeof(ParseContext), "parse context");
#endif
result = ProcessMethodArguments(pcPtr, interp, object,
checkAlwaysFlag|NSF_ARGPARSE_METHOD_PUSH|NSF_ARGPARSE_FORCE_REQUIRED,
paramDefs, objv[0], objc, objv);
cscPtr->objc = objc;
cscPtr->objv = (Tcl_Obj **)objv;
if (likely(result == TCL_OK)) {
releasePc = 1;
result = PushProcCallFrame(cp, interp, pcPtr->objc+1, pcPtr->full_objv, cscPtr);
} else {
/*
* some error occurred
*/
#if defined(NRE)
ParseContextRelease(pcPtr);
NsfTclStackFree(interp, pcPtr, "parse context (proc prep failed)");
pcPtr = NULL;
#else
ParseContextRelease(pcPtr);
#endif
}
} else {
result = PushProcCallFrame(cp, interp, objc, objv, cscPtr);
}
/*
* The stack frame is pushed, we could do something here before
* running the byte code of the body.
*/
/* we could consider to run here ARG_METHOD or ARG_INITCMD
if (likely(result == TCL_OK)) {
}
*/
#if defined(NSF_WITH_ASSERTIONS)
prep_done:
#endif
if (likely(result == TCL_OK)) {
#if defined(NRE)
/*fprintf(stderr, "CALL TclNRInterpProcCore %s method '%s'\n",
ObjectName(object), ObjStr(objv[0]));*/
Tcl_NRAddCallback(interp, ProcMethodDispatchFinalize,
(releasePc != 0) ? pcPtr : NULL,
cscPtr,
(ClientData)methodName,
NULL);
cscPtr->flags |= NSF_CSC_CALL_IS_NRE;
result = TclNRInterpProcCore(interp, objv[0], 1, &MakeProcError);
#else
ClientData data[3] = {
releasePc ? pcPtr : NULL,
cscPtr,
(ClientData)methodName
};
result = TclObjInterpProcCore(interp, objv[0], 1, &MakeProcError);
result = ProcMethodDispatchFinalize(data, interp, result);
#endif
} else /* result != OK */ {
#if defined(NRE)
CscFinish(interp, cscPtr, result, "nre, prep failed");
#endif
}
return result;
}
/*
*----------------------------------------------------------------------
* CmdMethodDispatch --
*
* Invoke a method implemented as a cmd. Essentially it stacks
* optionally a frame, calls the method, pops the frame and runs
* invariants.
*
* Results:
* Tcl result code.
*
* Side effects:
* Indirect effects by calling cmd
*
*----------------------------------------------------------------------
*/
static int CmdMethodDispatch(ClientData cp, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[],
NsfObject *object, Tcl_Command cmd, NsfCallStackContent *cscPtr)
nonnull(2) nonnull(4) nonnull(5) nonnull(6);
static int
CmdMethodDispatch(ClientData cp, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[],
NsfObject *object, Tcl_Command cmd,
NsfCallStackContent *cscPtr) {
CallFrame frame, *framePtr = &frame;
int result;
assert(interp != NULL);
assert(objv != NULL);
assert(cmd != NULL);
assert(object != NULL);
assert(object->teardown);
#if defined(NRE)
assert(!cscPtr || (cscPtr->flags & NSF_CSC_CALL_IS_NRE) == 0);
#endif
if (cscPtr != NULL) {
/*
* We have a call-stack content, but the requested dispatch will not store
* the call-stack content in a corresponding call-frame on its own. To get,
* for example, self introspection working for the requested dispatch, we
* introduce a CMETHOD frame.
*/
/*fprintf(stderr, "Nsf_PushFrameCsc %s %s\n", ObjectName(object), Tcl_GetCommandName(interp, cmd));*/
Nsf_PushFrameCsc(interp, cscPtr, framePtr);
result = Tcl_NRCallObjProc(interp, Tcl_Command_objProc(cmd), cp, objc, objv);
Nsf_PopFrameCsc(interp, framePtr);
} else {
result = Tcl_NRCallObjProc(interp, Tcl_Command_objProc(cmd), cp, objc, objv);
}
#if defined(NSF_WITH_ASSERTIONS)
if (unlikely(object->opt != NULL) && likely(result == TCL_OK)) {
CheckOptions co = object->opt->checkoptions;
if ((co & CHECK_INVAR)) {
int rc = AssertionCheckInvars(interp, object, Tcl_GetCommandName(interp, cmd), co);
if (rc != TCL_OK) {
result = rc;
}
}
}
#endif
/*
* Reference counting in the calling ObjectDispatch() makes sure
* that obj->opt is still accessible even after "dealloc"
*/
return result;
}
/*
*----------------------------------------------------------------------
* ObjectCmdMethodDispatch --
*
* Invoke a method implemented as an object. The referenced object is used
* as a source for methods to be executed. Essentially this is currently
* primarily used to implement the dispatch of ensemble objects.
*
* Results:
* Tcl result code.
*
* Side effects:
* Indirect effects by calling cmd
*
*----------------------------------------------------------------------
*/
static int ObjectCmdMethodDispatch(NsfObject *invokedObject, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[],
const char *methodName, NsfObject *callerSelf, NsfCallStackContent *cscPtr)
nonnull(1) nonnull(2) nonnull(4) nonnull(5) nonnull(6) nonnull(7);
static int
ObjectCmdMethodDispatch(NsfObject *invokedObject, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[],
const char *methodName, NsfObject *callerSelf, NsfCallStackContent *cscPtr) {
CallFrame frame, *framePtr = &frame;
Tcl_Command cmd, subMethodCmd;
const char *subMethodName;
NsfObject *actualSelf;
NsfClass *actualClass;
int result;
assert(invokedObject != NULL);
assert(interp != NULL);
assert(objv != NULL);
assert(methodName != NULL);
assert(callerSelf != NULL);
assert(cscPtr != NULL);
cmd = cscPtr->cmdPtr;
/*fprintf(stderr, "ObjectCmdMethodDispatch %p %s\n", cmd, Tcl_GetCommandName(interp, cmd));*/
/*fprintf(stderr, "ObjectCmdMethodDispatch method %s invokedObject %p %s callerSelf %p %s\n",
methodName, invokedObject, ObjectName(invokedObject),
callerSelf, ObjectName(callerSelf));*/
if (unlikely(invokedObject->flags & NSF_DELETED)) {
/*
* When we try to invoke a deleted object, the cmd (alias) is
* automatically removed. Note that the cmd might be still referenced
* in various entries in the call-stack. The reference counting on
* these elements takes care that the cmdPtr is deleted on a pop
* operation (although we do a Tcl_DeleteCommandFromToken() below.
*/
/*fprintf(stderr, "methodName %s found DELETED object with cmd %p my cscPtr %p\n",
methodName, cmd, cscPtr);*/
Tcl_DeleteCommandFromToken(interp, cmd);
if (cscPtr->cl != NULL) {
NsfInstanceMethodEpochIncr("DeleteObjectAlias");
} else {
NsfObjectMethodEpochIncr("DeleteObjectAlias");
}
NsfCleanupObject(invokedObject, "alias-delete1");
return NsfPrintError(interp, "trying to dispatch deleted object via method '%s'",
methodName);
}
/*
* Check, if the object cmd was called without a reference to a method. If
* so, perform the standard dispatch of default methods.
*/
if (unlikely(objc < 2)) {
if ((invokedObject->flags & NSF_PER_OBJECT_DISPATCH) != 0) {
cscPtr->flags |= NSF_CSC_CALL_IS_ENSEMBLE;
}
Nsf_PushFrameCsc(interp, cscPtr, framePtr);
result = DispatchDefaultMethod(interp, invokedObject, objv[0], NSF_CSC_IMMEDIATE);
Nsf_PopFrameCsc(interp, framePtr);
return result;
}
/*
* Check, if we want NSF_KEEP_CALLER_SELF. The setting of this flag
* determines the values of actualSelf and actualClass.
*/
if (invokedObject->flags & NSF_KEEP_CALLER_SELF) {
actualSelf = callerSelf;
actualClass = cscPtr->cl;
} else {
actualSelf = invokedObject;
actualClass = NULL;
}
subMethodName = ObjStr(objv[1]);
if ((invokedObject->flags & NSF_PER_OBJECT_DISPATCH) == 0) {
/*fprintf(stderr, "invokedObject %p %s methodName %s: no perobjectdispatch\n",
invokedObject, ObjectName(invokedObject), methodName);*/
#if 0
/*
* We should have either an approach
* - to obtain from an object to methodname the cmd, and
* call e.g. MethodDispatch(), or pass a fully qualified
* method name, or
* - to pass an the actualSelf and invokedObject both
* to MethodDispatch/MethodDispatch
* TODO: maybe remove NSF_CM_KEEP_CALLER_SELF when done.
*/
result = MethodDispatch(object, interp,
nobjc+1, nobjv-1, cmd, object,
NULL /*NsfClass *cl*/,
Tcl_GetCommandName(interp, cmd),
NSF_CSC_TYPE_PLAIN, flags);
#endif
#if 1
/* simple and brutal */
if (likely(invokedObject->nsPtr != NULL)) {
subMethodCmd = FindMethod(invokedObject->nsPtr, subMethodName);
} else {
subMethodCmd = NULL;
}
if (subMethodCmd == NULL) {
/* no -system handling */
actualClass = SearchPLMethod(invokedObject->cl->order, subMethodName, &subMethodCmd,
NSF_CMD_CALL_PRIVATE_METHOD);
}
if (likely(subMethodCmd != NULL)) {
cscPtr->objc = objc;
cscPtr->objv = objv;
Nsf_PushFrameCsc(interp, cscPtr, framePtr);
result = MethodDispatch(actualSelf,
interp, objc-1, objv+1,
subMethodCmd, actualSelf, actualClass, subMethodName,
cscPtr->frameType|NSF_CSC_TYPE_ENSEMBLE,
(cscPtr->flags & 0xFF)|NSF_CSC_IMMEDIATE);
Nsf_PopFrameCsc(interp, framePtr);
return result;
}
/*fprintf(stderr, "... objv[0] %s cmd %p %s csc %p\n",
ObjStr(objv[0]), subMethodCmd, subMethodName, cscPtr); */
if (0) {
fprintf(stderr, "new unknown\n");
return DispatchUnknownMethod(interp, invokedObject, /* objc-1, objv+1*/ objc, objv, actualSelf->cmdName,
objv[1], NSF_CM_NO_OBJECT_METHOD|NSF_CSC_IMMEDIATE);
}
#endif
return ObjectDispatch(actualSelf, interp, objc, objv, NSF_CM_KEEP_CALLER_SELF);
}
/*
* NSF_PER_OBJECT_DISPATCH is set
*/
if (likely(invokedObject->nsPtr != NULL)) {
subMethodCmd = FindMethod(invokedObject->nsPtr, subMethodName);
} else {
subMethodCmd = NULL;
}
/*
* Make sure, that the current call is marked as an ensemble call, both
* for dispatching to the default-method and for dispatching the method
* interface of the given object. Otherwise, current introspection
* specific to sub-methods fails (e.g., a [current method-path] in the
* default-method).
*/
cscPtr->flags |= NSF_CSC_CALL_IS_ENSEMBLE;
/* fprintf(stderr, "ensemble dispatch cp %s %s objc %d\n",
ObjectName((NsfObject*)cp), methodName, objc);*/
cscPtr->objc = objc;
cscPtr->objv = objv;
Nsf_PushFrameCsc(interp, cscPtr, framePtr);
/*fprintf(stderr, "... objv[0] %s cmd %p %s csc %p\n",
ObjStr(objv[0]), subMethodCmd, subMethodName, cscPtr); */
if (likely(subMethodCmd != NULL)) {
/*
* In order to allow [next] to be called in an ensemble method,
* an extra call-frame is needed. This CSC frame is typed as
* NSF_CSC_TYPE_ENSEMBLE. Note that the associated call is flagged
* additionally (NSF_CSC_CALL_IS_ENSEMBLE; see above) to be able
* to identify ensemble-specific frames during [next] execution.
*
* The dispatch requires NSF_CSC_IMMEDIATE to be set, ensuring
* that scripted methods are executed before the ensemble ends. If
* they were executed later, they would find their parent frame
* (CMETHOD) being popped from the stack already.
*/
/*fprintf(stderr, ".... ensemble dispatch object %s self %s pass %s\n",
ObjectName(invokedObject), ObjectName(actualSelf), (actualSelf->flags & NSF_KEEP_CALLER_SELF) ? "callerSelf" : "invokedObject");
fprintf(stderr, ".... ensemble dispatch on %s.%s objflags %.8x cscPtr %p base flags %.6x flags %.6x cl %s\n",
ObjectName(actualSelf), subMethodName, actualSelf->flags,
cscPtr, (0xFF & cscPtr->flags), (cscPtr->flags & 0xFF)|NSF_CSC_IMMEDIATE, (actualClass != NULL) ? ClassName(actualClass) : "NONE");*/
result = MethodDispatch(actualSelf,
interp, objc-1, objv+1,
subMethodCmd, actualSelf, actualClass, subMethodName,
cscPtr->frameType|NSF_CSC_TYPE_ENSEMBLE,
(cscPtr->flags & 0xFF)|NSF_CSC_IMMEDIATE);
/*if (unlikely(result != TCL_OK)) {
fprintf(stderr, "ERROR: cmd %p %s subMethodName %s -- %s -- %s\n",
subMethodCmd, Tcl_GetCommandName(interp, subMethodCmd), subMethodName,
Tcl_GetCommandName(interp, cscPtr->cmdPtr), ObjStr(Tcl_GetObjResult(interp)));
}*/
} else {
/*
* The method to be called was not part of this ensemble. Call
* next to try to call such methods along the next path.
*/
Tcl_CallFrame *framePtr1;
NsfCallStackContent *cscPtr1 = CallStackGetTopFrame(interp, &framePtr1);
/*fprintf(stderr, "call next instead of unknown %s.%s \n",
ObjectName(cscPtr->self), methodName);*/
assert(cscPtr1 != NULL);
if ((cscPtr1->frameType & NSF_CSC_TYPE_ENSEMBLE)) {
/*
* We are in an ensemble method. The next works here not on the
* actual methodName + frame, but on the ensemble above it. We
* locate the appropriate call-stack content and continue next on
* that.
*/
cscPtr1 = CallStackFindEnsembleCsc(framePtr1, &framePtr1);
assert(cscPtr1 != NULL);
}
/*
* We mark in the flags that we are in an ensemble but failed so far to
* resolve the cmd. Now we try to resolve the unknown subcmd via next and
* we record this in the flags. The method name for next might be
* colon-prefixed. In these cases, we have to skip the single colon with
* the MethodName() function.
*/
cscPtr1-> flags |= NSF_CM_ENSEMBLE_UNKNOWN;
/* fprintf(stderr, "==> trying to find <%s> in ensemble <%s> via next\n",
subMethodName, MethodName(cscPtr1->objv[0]));*/
result = NextSearchAndInvoke(interp, MethodName(cscPtr1->objv[0]),
cscPtr1->objc, cscPtr1->objv, cscPtr1, 0);
/*fprintf(stderr, "==> next %s.%s subMethodName %s (obj %s) cscPtr %p (flags %.8x)) cscPtr1 %p (flags %.8x) result %d unknown %d\n",
ObjectName(callerSelf), methodName, subMethodName, ObjectName(invokedObject),
cscPtr, cscPtr->flags, cscPtr1, (cscPtr1 != NULL) ? cscPtr1->flags : 0,
result, RUNTIME_STATE(interp)->unknown);*/
if (RUNTIME_STATE(interp)->unknown) {
Tcl_Obj *callInfoObj = Tcl_NewListObj(1, &callerSelf->cmdName);
Tcl_CallFrame *varFramePtr, *tclFramePtr = CallStackGetTclFrame(interp,(Tcl_CallFrame *)framePtr, 1);
int pathLength, pathLength0 = 0, getPath = 1, unknownIndex;
Tcl_Obj *pathObj = NsfMethodNamePath(interp, tclFramePtr, MethodName(objv[0]));
/*
* The "next" call could not resolve the unknown subcommand. At this
* point, potentially serval different ensembles were tried, which can
* be found on the stack.
*
* Example1: call: foo a b d
* mixin: foo a b c
* object: foo a x
*
* We want to return the longest, most precise prefix (here "foo a b")
* and flag "d" as unknown (here the mixin frame). Another (inferior)
* solution would be to report "foo a" as know prefix and "b d" as
* unknown (when the error is generated from the point of view of the
* object method frame).
*
* In the general case, we traverse the stack for all ensembles and pick
* the longest known ensemble for reporting. This path is passed to the
* unknown-handler of the ensemble.
*/
Tcl_ListObjLength(interp, pathObj, &pathLength0);
pathLength = pathLength0;
for (varFramePtr = (Tcl_CallFrame *)framePtr; likely(varFramePtr != NULL);
varFramePtr = Tcl_CallFrame_callerVarPtr(varFramePtr)) {
NsfCallStackContent *cscPtr;
/*
* If we reach a non-nsf frame, or it is not an ensemble, we are done.
*/
cscPtr = (Tcl_CallFrame_isProcCallFrame(varFramePtr) & (FRAME_IS_NSF_METHOD|FRAME_IS_NSF_CMETHOD)) ?
(NsfCallStackContent *)Tcl_CallFrame_clientData(varFramePtr) : NULL;
if (cscPtr == NULL || (cscPtr->flags & NSF_CSC_CALL_IS_ENSEMBLE) == 0) {
break;
}
/*
* Every ensemble block starts with a frame of
* NSF_CSC_TYPE_ENSEMBLE. If we find one, then we compute a new path
* in the next iteration.
*/
if ((cscPtr->frameType & (NSF_CSC_TYPE_ENSEMBLE)) == 0) {
/* get method path the next round */
getPath = 1;
} else if (getPath == 1) {
Tcl_Obj *pathObj1 = CallStackMethodPath(interp, varFramePtr);
int pathLength1;
getPath = 0;
Tcl_ListObjLength(interp, pathObj1, &pathLength1);
if (pathLength1 > pathLength) {
if (pathObj != NULL) {
DECR_REF_COUNT(pathObj);
}
pathObj = pathObj1;
pathLength = pathLength1;
}
}
}
unknownIndex = pathLength <= pathLength0 ? 1 : 1 + pathLength - pathLength0;
assert(objc > unknownIndex);
INCR_REF_COUNT(callInfoObj);
Tcl_ListObjAppendList(interp, callInfoObj, pathObj);
Tcl_ListObjAppendElement(interp, callInfoObj, objv[unknownIndex]);
/* fprintf(stderr, "DispatchUnknownMethod is called with callinfo <%s> (callerSelf <%s>, methodName '%s', methodPath '%s')\n",
ObjStr(callInfoObj), ObjStr(callerSelf->cmdName), MethodName(objv[0]),
ObjStr(callInfoObj)); */
result = DispatchUnknownMethod(interp, invokedObject, objc-1, objv+1, callInfoObj,
objv[1], NSF_CM_NO_OBJECT_METHOD|NSF_CSC_IMMEDIATE);
DECR_REF_COUNT(callInfoObj);
}
}
Nsf_PopFrameCsc(interp, framePtr);
return result;
}
#if !defined(NSF_ASSEMBLE)
static int NsfAsmProc(ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *CONST objv[]) {
return TCL_OK;
}
#endif
/*
*----------------------------------------------------------------------
* CheckCStack --
*
* Monitor the growth of the C Stack when complied with
* NSF_STACKCHECK.
*
* Results:
* none
*
* Side effects:
* update of rst->bottomOfStack
*
*----------------------------------------------------------------------
*/
#if defined(NSF_STACKCHECK)
NSF_INLINE static void CheckCStack(Tcl_Interp *interp, const char *prefix, const char *fullMethodName)
nonnull(1) nonnull(2) nonnull(3);
NSF_INLINE static void
CheckCStack(Tcl_Interp *interp, const char *prefix, const char *fullMethodName) {
int somevar;
NsfRuntimeState *rst = RUNTIME_STATE(interp);
assert(interp != NULL);
assert(prefix != NULL);
assert(fullMethodName != NULL);
if (rst->exitHandlerDestroyRound == NSF_EXITHANDLER_OFF) {
# if TCL_STACK_GROWS_UP
if ((void *)&somevar < rst->bottomOfStack) {
NsfLog(interp, NSF_LOG_WARN, "Stack adjust bottom %ld - %s %s",
(void *)&somevar - rst->bottomOfStack, prefix, fullMethodName);
rst->bottomOfStack = (void *)&somevar;
} else if ((void *)&somevar > rst->maxStack) {
NsfLog(interp, NSF_LOG_WARN, "Stack adjust top %ld - %s %s",
(void *)&somevar - rst->bottomOfStack, prefix, fullMethodName);
rst->maxStack = (void *)&somevar;
}
# else
if ((void *)&somevar > rst->bottomOfStack) {
NsfLog(interp, NSF_LOG_WARN, "Stack adjust bottom %ld - %s %s",
rst->bottomOfStack - (void *)&somevar, prefix, fullMethodName);
rst->bottomOfStack = (void *)&somevar;
} else if ((void *)&somevar < rst->maxStack) {
NsfLog(interp, NSF_LOG_WARN, "Stack adjust top %ld - %s %s",
rst->bottomOfStack - (void *)&somevar, prefix, fullMethodName);
rst->maxStack = (void *)&somevar;
}
# endif
}
}
#else
# define CheckCStack(interp, prefix, methodName)
#endif
/*
*----------------------------------------------------------------------
* MethodDispatchCsc --
*
* Dispatch a method (scripted or cmd) with an already allocated
* call stack content. The method calls either ProcMethodDispatch()
* (for scripted methods) or CmdMethodDispatch() (otherwise).
*
* Results:
* Tcl result code.
*
* Side effects:
* Indirect effects by calling methods
*
*----------------------------------------------------------------------
*/
static int MethodDispatchCsc(ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *CONST objv[],
Tcl_Command cmd,
NsfCallStackContent *cscPtr, const char *methodName,
int *validCscPtr)
nonnull(1) nonnull(2) nonnull(4) nonnull(5) nonnull(6) nonnull(7) nonnull(8);
static int
MethodDispatchCsc(ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *CONST objv[],
Tcl_Command cmd,
NsfCallStackContent *cscPtr, const char *methodName,
int *validCscPtr) {
NsfObject *object;
ClientData cp = Tcl_Command_objClientData(cmd);
Tcl_ObjCmdProc *proc = Tcl_Command_objProc(cmd);
NsfCallStackContent *cscPtr1;
assert(clientData != NULL);
assert(interp != NULL);
assert(objv != NULL);
assert(cmd != NULL);
assert(cscPtr != NULL);
assert(methodName != NULL);
assert(validCscPtr != NULL);
object = cscPtr->self;
/*
* Privide DTrace with calling info
*/
if (NSF_DTRACE_METHOD_ENTRY_ENABLED()) {
NSF_DTRACE_METHOD_ENTRY(ObjectName(object), (cscPtr->cl != NULL) ? ClassName(cscPtr->cl) : ObjectName(object),
(char *)methodName,
objc-1, (Tcl_Obj **)objv+1);
}
/*fprintf(stderr, "MethodDispatch method '%s' cmd %p %s clientData %p cp=%p objc=%d cscPtr %p csc->flags %.6x \n",
methodName, cmd, Tcl_GetCommandName(interp, cmd), clientData,
cp, objc, cscPtr, cscPtr->flags);*/
/*fprintf(stderr, "MethodDispatch method '%s' cmd %p cp=%p objc=%d cscPtr %p csc->flags %.6x "
"obj->flags %.6x teardown %p\n",
methodName, cmd, cp, objc, cscPtr, cscPtr->flags, object->flags, object->teardown);*/
assert(object->teardown);
/*
* The default assumption is that the CscPtr is valid after this function
* finishes.
*/
if (likely(proc == TclObjInterpProc)) {
int result;
#if defined(NRE)
NRE_callback *rootPtr = TOP_CB(interp);
int isImmediate = (cscPtr->flags & NSF_CSC_IMMEDIATE);
# if defined(NRE_CALLBACK_TRACE)
NsfClass *cl = cscPtr->cl;
# endif
#endif
/*
* The cmd is a scripted method
*/
result = ProcMethodDispatch(cp, interp, objc, objv, methodName,
object, cscPtr->cl, cmd, cscPtr);
#if defined(NRE)
/*
* In the NRE case, there is no trust in the cscPtr anymore, it might be already gone.
*/
*validCscPtr = 0;
if (unlikely(isImmediate)) {
# if defined(NRE_CALLBACK_TRACE)
fprintf(stderr, ".... manual run callbacks rootPtr = %p, result %d methodName %s.%s\n",
rootPtr, result, (cl != NULL) ?ClassName(cl):"NULL", methodName);
# endif
result = NsfNRRunCallbacks(interp, result, rootPtr);
} else {
# if defined(NRE_CALLBACK_TRACE)
fprintf(stderr, ".... don't run callbacks rootPtr = %p, result %d methodName %s.%s\n",
rootPtr, result, (cl != NULL) ?ClassName(cl):"NULL", methodName);
# endif
}
#endif
/*
* scripted method done
*/
return result;
} else if (proc == NsfObjDispatch) {
assert(cp != NULL);
return ObjectCmdMethodDispatch((NsfObject *)cp, interp, objc, objv,
methodName, object, cscPtr);
} else if (cp != NULL) {
cscPtr1 = cscPtr;
/*fprintf(stderr, "cscPtr %p cmd %p %s wanna stack cmd %p %s cp %p no-leaf %d force frame %d\n",
cscPtr, cmd, Tcl_GetCommandName(interp, cmd),
cmd, Tcl_GetCommandName(interp, cmd),
cp,
(Tcl_Command_flags(cmd) & NSF_CMD_NONLEAF_METHOD),
(cscPtr->flags & NSF_CSC_FORCE_FRAME));*/
/*
* The cmd has client data, we check for required updates in this
* structure.
*/
if (proc == NsfForwardMethod ||
proc == NsfObjscopedMethod ||
proc == NsfSetterMethod ||
proc == NsfAsmProc
) {
TclCmdClientData *tcd = (TclCmdClientData *)cp;
assert(tcd != NULL);
tcd->object = object;
assert((CmdIsProc(cmd) == 0));
} else if (cp == (ClientData)NSF_CMD_NONLEAF_METHOD) {
cp = clientData;
assert((CmdIsProc(cmd) == 0));
}
#if !defined(NDEBUG)
else if (proc == NsfProcAliasMethod) {
/* This should never happen */
Tcl_Panic("Alias invoked in unexpected way");
}
#endif
} else if ((Tcl_Command_flags(cmd) & NSF_CMD_NONLEAF_METHOD)
|| (cscPtr->flags & NSF_CSC_FORCE_FRAME)) {
/*
* Technically, we would not need a frame to execute the cmd, but maybe,
* the user want's it (to be able to call next, or the keep proc-level
* variables. The clientData cp is in such cases typically NULL.
*/
/*fprintf(stderr, "FORCE_FRAME\n");*/
cscPtr1 = cscPtr;
} else {
/*
* There is no need to pass a frame. Use the original clientData.
*/
cscPtr1 = NULL;
}
if (cscPtr1 != NULL) {
/*
* Call with a stack frame.
*/
/*fprintf(stderr, "cmdMethodDispatch %s.%s, cscPtr %p objflags %.6x\n",
ObjectName(object), methodName, cscPtr, object->flags); */
return CmdMethodDispatch(cp, interp, objc, objv, object, cmd, cscPtr1);
} else {
/*
* Call without a stack frame.
*/
CscListAdd(interp, cscPtr);
/*fprintf(stderr, "cmdMethodDispatch %p %s.%s, nothing stacked, objflags %.6x\n",
cmd, ObjectName(object), methodName, object->flags); */
return CmdMethodDispatch(clientData, interp, objc, objv, object, cmd, NULL);
}
}
/*
*----------------------------------------------------------------------
* MethodDispatch --
*
* Convenience wrapper for MethodDispatchCsc(). It allocates a call
* stack content and invokes MethodDispatchCsc.
*
* Results:
* Tcl result code.
*
* Side effects:
* Indirect effects by calling methods
*
*----------------------------------------------------------------------
*/
static int
MethodDispatch(ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *CONST objv[],
Tcl_Command cmd, NsfObject *object, NsfClass *cl,
const char *methodName, int frameType, unsigned int flags) {
NsfCallStackContent csc, *cscPtr;
int result, isValidCsc = 1;
Tcl_Command resolvedCmd;
assert(clientData != NULL);
assert(interp != NULL);
assert(objv != NULL);
assert(cmd != NULL);
assert(object != NULL);
assert(methodName != NULL);
assert(object->teardown);
CheckCStack(interp, "method", methodName);
/*fprintf(stderr, "MethodDispatch method '%s.%s' objc %d flags %.6x\n",
ObjectName(object), methodName, objc, flags); */
resolvedCmd = AliasDereference(interp, object, methodName, cmd);
if (unlikely(resolvedCmd == NULL)) {
return TCL_ERROR;
}
/*
* cscAlloc uses for resolvedCmd for allocating the call stack content and
* sets the IS_NRE flag based on it. We use the original cmd in the
* callstack content structure for introspection.
*/
cscPtr = CscAlloc(interp, &csc, resolvedCmd);
/*
* We would not need CscInit when cp (clientData) == NULL &&
* !(Tcl_Command_flags(cmd) & NSF_CMD_NONLEAF_METHOD) TODO: We could pass
* cmd==NULL, but is this worth it?
*/
CscInit(cscPtr, object, cl, cmd, frameType, flags, methodName);
result = MethodDispatchCsc(object, interp, objc, objv,
resolvedCmd, cscPtr, methodName, &isValidCsc);
#if defined(NRE)
if (isValidCsc == 1) {
CscListRemove(interp, cscPtr, NULL);
CscFinish(interp, cscPtr, result, "csc cleanup");
}
#else
CscListRemove(interp, cscPtr, NULL);
CscFinish(interp, cscPtr, result, "csc cleanup");
#endif
return result;
}
/*
*----------------------------------------------------------------------
* ObjectDispatchFinalize --
*
* Finalization function for ObjectDispatch() which performs method
* lookup and call all kind of methods. The function runs after
* ObjectDispatch() and calls the unknown handler if necessary and
* resets the filter and mixin stacks.
*
* Results:
* Tcl result code.
*
* Side effects:
* Maybe side effects by the cmd called by ParameterCheck()
* or DispatchUnknownMethod()
*
*----------------------------------------------------------------------
*/
NSF_INLINE static int ObjectDispatchFinalize(Tcl_Interp *interp, NsfCallStackContent *cscPtr,
int result /*, char *msg, const char *methodName*/)
nonnull(1) nonnull(2);
NSF_INLINE static int
ObjectDispatchFinalize(Tcl_Interp *interp, NsfCallStackContent *cscPtr,
int result /*, char *msg, const char *methodName*/) {
NsfRuntimeState *rst = RUNTIME_STATE(interp);
NsfObject *object;
unsigned int flags;
assert(interp != NULL);
assert(cscPtr != NULL);
object = cscPtr->self;
assert(object != NULL);
assert(object->id);
flags = cscPtr->flags;
/*fprintf(stderr, "ObjectDispatchFinalize %p %s flags %.6x (%d) frame %.6x unk %d m %s\n",
cscPtr, ObjectName(object), flags,
result, cscPtr->frameType, RUNTIME_STATE(interp)->unknown, (cscPtr->cmdPtr != NULL) ? Tcl_GetCommandName(interp, cscPtr->cmdPtr) : "");*/
/*
* Check the return value if wanted
*/
if (likely(result == TCL_OK && cscPtr->cmdPtr && Tcl_Command_cmdEpoch(cscPtr->cmdPtr) == 0)) {
NsfParamDefs *paramDefs = ParamDefsGet(cscPtr->cmdPtr, NULL);
if (paramDefs && paramDefs->returns) {
Tcl_Obj *valueObj = Tcl_GetObjResult(interp);
result = ParameterCheck(interp, paramDefs->returns, valueObj, "return-value:",
rst->doCheckResults, 0, 0, NULL);
}
} else {
/*fprintf(stderr, "We have no cmdPtr in cscPtr %p %s", cscPtr, ObjectName(object));
fprintf(stderr, "... cannot check return values!\n");*/
}
/*
* On success (no error occurred) check for unknown cases.
*/
if (likely(result == TCL_OK)) {
if (unlikely((flags & NSF_CSC_METHOD_IS_UNKNOWN)
|| ((cscPtr->frameType == NSF_CSC_TYPE_ACTIVE_FILTER) && rst->unknown)
)) {
result = DispatchUnknownMethod(interp, object,
cscPtr->objc, cscPtr->objv, NULL, cscPtr->objv[0],
(cscPtr->flags & NSF_CSC_CALL_NO_UNKNOWN)|NSF_CSC_IMMEDIATE);
}
}
/*
* Resetting mixin and filter stacks
*/
if (unlikely(flags & NSF_CSC_MIXIN_STACK_PUSHED) && object->mixinStack) {
/* fprintf(stderr, "MixinStackPop %s.%s %p %s\n",
ObjectName(object), methodName, object->mixinStack, msg);*/
MixinStackPop(object);
}
if (unlikely(flags & NSF_CSC_FILTER_STACK_PUSHED) && object->filterStack) {
/* fprintf(stderr, "FilterStackPop %s.%s %p %s\n",
ObjectName(object), methodName, object->filterStack, msg);*/
FilterStackPop(object);
}
return result;
}
/*#define INHERIT_CLASS_METHODS 1*/
#if defined(INHERIT_CLASS_METHODS)
static Tcl_Command NsfFindClassMethod(Tcl_Interp *interp, NsfClass *cl, const char *methodName)
nonnull(1) nonnull(2) nonnull(3);
static Tcl_Command
NsfFindClassMethod(Tcl_Interp *interp, NsfClass *cl, const char *methodName) {
Tcl_Command cmd;
NsfClasses *p;
assert(interp != NULL);
assert(cl != NULL);
assert(methodName != NULL);
/*fprintf(stderr, "NsfFindClassMethod %s %s\n", ClassName(cl), methodName);*/
for(p = PrecedenceOrder(cl); p; p = p->nextPtr) {
NsfClass *currentClass = p->cl;
Tcl_Namespace *nsPtr = currentClass->object.nsPtr;
/*fprintf(stderr, "1 check for obj ns in class %s => %p\n",
ClassName(currentClass), nsPtr);*/
if (nsPtr != NULL) {
cmd = FindMethod(nsPtr, methodName);
/*fprintf(stderr, "1 lookup for method %s in class %s => %p\n",
methodName, ClassName(currentClass), cmd);*/
if (cmd != NULL) {return cmd;}
}
}
return NULL;
}
#endif
/*
*----------------------------------------------------------------------
* ObjectDispatch --
*
* This function performs the method lookup and call all kind of
* methods. It checks, whether a filter or mixin has to be
* applied. in these cases, the effective method lookup is
* performed by next.
*
* Results:
* Tcl result code.
*
* Side effects:
* Maybe side effects by the cmd called by ParameterCheck()
* or DispatchUnknownMethod()
*
*----------------------------------------------------------------------
*/
NSF_INLINE static int ObjectDispatch(ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *CONST objv[],
unsigned int flags)
nonnull(2) nonnull(4);
NSF_INLINE static int
ObjectDispatch(ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *CONST objv[],
unsigned int flags) {
register NsfObject *object = (NsfObject *)clientData;
int result = TCL_OK, objflags, shift,
frameType = NSF_CSC_TYPE_PLAIN;
const char *methodName;
NsfObject *calledObject;
NsfClass *cl = NULL;
Tcl_Command cmd = NULL;
Tcl_Obj *cmdName = object->cmdName, *methodObj;
NsfCallStackContent csc, *cscPtr = NULL;
int isValidCsc = 1;
NsfRuntimeState *rst = RUNTIME_STATE(interp);
assert(interp != NULL);
assert(objv != NULL);
/* none of the higher copy-flags must be passed */
assert((flags & (NSF_CSC_COPY_FLAGS & 0x000FFF000U)) == 0);
if (unlikely(flags & NSF_CM_NO_SHIFT)) {
shift = 0;
methodObj = objv[0];
methodName = MethodName(methodObj);
} else {
assert(objc > 1);
shift = 1;
methodObj = objv[1];
methodName = ObjStr(methodObj);
if (unlikely(FOR_COLON_RESOLVER(methodName))) {
return NsfPrintError(interp, "%s: method name '%s' must not start with a colon",
ObjectName(object), methodName);
}
}
assert(object->teardown);
#if defined(METHOD_OBJECT_TRACE)
fprintf(stderr, "method %p/%d '%s' type %p <%s>\n",
methodObj, methodObj->refCount, methodName, methodObj->typePtr, (methodObj->typePtr != NULL) ? methodObj->typePtr->name : "");
#endif
/*fprintf(stderr, "ObjectDispatch obj = %s objc = %d 0=%s methodName=%s shift %d\n", (object != NULL) ? ObjectName(object) : NULL,
objc, objv[0] ? ObjStr(objv[0]) : NULL,
methodName, shift);*/
objflags = object->flags; /* avoid stalling */
/*
* Make sure, cmdName and obj survive this method until the end of
* this function.
*/
INCR_REF_COUNT(cmdName);
NsfObjectRefCountIncr(object);
/*fprintf(stderr, "obj refCount of %p after incr %d (ObjectDispatch) %s\n",
object, object->refCount, methodName);*/
if (unlikely((objflags & NSF_FILTER_ORDER_VALID) == 0)) {
FilterComputeDefined(interp, object);
objflags = object->flags;
}
if (unlikely((objflags & NSF_MIXIN_ORDER_VALID) == 0)) {
MixinComputeDefined(interp, object);
objflags = object->flags;
}
/*
* Only start new filter chain, if
* (a) filters are defined and
* (b) the toplevel csc entry is not an filter on self
*/
/*fprintf(stderr, "call %s, objflags %.6x, defined and valid %.6x doFilters %d guard count %d\n",
methodName, objflags, NSF_FILTER_ORDER_DEFINED_AND_VALID,
rst->doFilters, rst->guardCount);*/
assert((flags & (NSF_CSC_MIXIN_STACK_PUSHED|NSF_CSC_FILTER_STACK_PUSHED)) == 0);
if (unlikely((objflags & NSF_FILTER_ORDER_DEFINED_AND_VALID) == NSF_FILTER_ORDER_DEFINED_AND_VALID)) {
if (rst->doFilters && !rst->guardCount) {
NsfCallStackContent *cscPtr1 = CallStackGetTopFrame0(interp);
if (cscPtr1 == NULL ||
(object != cscPtr1->self || (cscPtr1->frameType != NSF_CSC_TYPE_ACTIVE_FILTER))) {
FilterStackPush(object, methodObj);
flags |= NSF_CSC_FILTER_STACK_PUSHED;
cmd = FilterSearchProc(interp, object, &object->filterStack->currentCmdPtr, &cl);
if (cmd != NULL) {
/*fprintf(stderr, "*** filterSearchProc returned cmd %p\n", cmd);*/
frameType = NSF_CSC_TYPE_ACTIVE_FILTER;
methodName = (char *)Tcl_GetCommandName(interp, cmd);
flags |= NSF_CM_IGNORE_PERMISSIONS;
}
}
}
}
if (unlikely(cmd == NULL && (flags & NSF_CM_LOCAL_METHOD))) {
/*
* We require a local method. If the local method is found, we set always
* the cmd and sometimes the class (if it is a class specific method).
*/
NsfCallStackContent *cscPtr1 = CallStackGetTopFrame0(interp);
if (unlikely(cscPtr1 == NULL)) {
return NsfPrintError(interp, "flag '-local' only allowed when called from a method body");
}
if (cscPtr1->cl != NULL) {
cmd = FindMethod(cscPtr1->cl->nsPtr, methodName);
if (cmd != NULL) {
cl = cscPtr1->cl;
}
} else if (object->nsPtr != NULL) {
cmd = FindMethod(object->nsPtr, methodName);
}
/*fprintf(stderr, "ObjectDispatch NSF_CM_LOCAL_METHOD obj %s methodName %s => cl %p %s cmd %p \n", (object != NULL) ? ObjectName(object) : NULL,
methodName, cl, (cl != NULL) ? ClassName(cl) : "NONE", cmd);*/
} else if (unlikely(*methodName == ':')) {
NsfObject *regObject;
int fromClassNS = 0;
/*
* We have fully qualified name provided. Determine the class and/or
* object on which the method was registered.
*/
INCR_REF_COUNT(methodObj);
cmd = ResolveMethodName(interp, NULL, methodObj,
NULL, ®Object, NULL, NULL, &fromClassNS);
DECR_REF_COUNT(methodObj);
if (likely(cmd != NULL)) {
if (CmdIsNsfObject(cmd)) {
/*
* Don't allow for calling objects as methods via fully qualified
* names. Otherwise, in line [2] below, ::State (or any children of
* it, e.g., ::Slot::child) is interpreted as a method candidate. As a
* result, dispatch chaining occurs with ::State or ::State::child
* being the receiver (instead of Class) of the method call
* "-parameter". In such a dispatch chaining, the method "unknown"
* won't be called on Class (in the XOTcl tradition), effectively
* bypassing any unknown-based indirection mechanism (e.g., XOTcl's short-cutting
* of object/class creations).
*
* [1] Class ::State; Class ::State::child
* [2] Class ::State -parameter x; Class ::State::child -parameter x
*/
NsfLog(interp, NSF_LOG_NOTICE,
"Don't invoke object %s this way. Register object via alias ...",
methodName);
cmd = NULL;
} else {
if (regObject != NULL) {
if (NsfObjectIsClass(regObject)) {
cl = (NsfClass *)regObject;
}
}
/* fprintf(stderr, "fully qualified lookup of %s returned %p\n", ObjStr(methodObj), cmd); */
/* ignore permissions for fully qualified method names */
flags |= NSF_CM_IGNORE_PERMISSIONS;
}
/*fprintf(stderr, "ObjectDispatch fully qualified obj %s methodName %s => cl %p cmd %p \n", (object != NULL) ? ObjectName(object) : NULL,
methodName, cl, cmd);*/
}
}
/*fprintf(stderr, "MixinStackPush check for %p %s.%s objflags %.6x == %d\n",
object, ObjectName(object), methodName, objflags & NSF_MIXIN_ORDER_DEFINED_AND_VALID,
(objflags & NSF_MIXIN_ORDER_DEFINED_AND_VALID) == NSF_MIXIN_ORDER_DEFINED_AND_VALID);*/
/*
* Check if a mixed in method has to be called.
*/
if (unlikely((objflags & NSF_MIXIN_ORDER_DEFINED_AND_VALID) == NSF_MIXIN_ORDER_DEFINED_AND_VALID
&& (flags & (NSF_CM_SYSTEM_METHOD|NSF_CM_INTRINSIC_METHOD)) == 0
&& ((flags & NSF_CM_LOCAL_METHOD) == 0 || cl))) {
/*
* The current logic allocates first an entry on the per-object
* stack and searches then for a mixin. This could be improved by
* allocating a stack entry just when an mixin is found. The same
* holds for the filters above, but there, the hit-rate is much
* larger.
*/
MixinStackPush(object);
flags |= NSF_CSC_MIXIN_STACK_PUSHED;
if (frameType != NSF_CSC_TYPE_ACTIVE_FILTER) {
Tcl_Command cmd1 = cmd;
/*
* The entry is just searched and pushed on the stack when we
* have no filter; in the filter case, the search happens in
* next.
*/
result = MixinSearchProc(interp, object, methodName, methodObj, &cl,
&object->mixinStack->currentCmdPtr, &cmd1);
if (unlikely(result != TCL_OK)) {
/*fprintf(stderr, "mixinsearch returned an error for %p %s.%s\n",
object, ObjectName(object), methodName);*/
isValidCsc = 0;
goto exit_object_dispatch;
}
if (cmd1 != NULL) {
frameType = NSF_CSC_TYPE_ACTIVE_MIXIN;
cmd = cmd1;
}
}
}
/*
* If no fully qualified method name/filter/mixin was found then perform
* ordinary method lookup. First, try to resolve the method name as a
* per-object method.
*/
if (likely(cmd == NULL)) {
NsfMethodContext *mcPtr = methodObj->internalRep.twoPtrValue.ptr1;
int nsfObjectMethodEpoch = rst->objectMethodEpoch;
if (methodObj->typePtr == &NsfObjectMethodObjType
&& mcPtr->context == object
&& mcPtr->methodEpoch == nsfObjectMethodEpoch
&& mcPtr->flags == flags
) {
cmd = mcPtr->cmd;
#if defined(METHOD_OBJECT_TRACE)
fprintf(stderr, "... use internal rep method %p %s cmd %p (objProc %p) cl %p %s\n",
methodObj, ObjStr(methodObj),
cmd, (cmd != NULL) ? ((Command *)cmd)->objProc : 0,
cl, (cl != NULL) ? ClassName(cl) : ObjectName(object));
#endif
assert((cmd != NULL) ? ((Command *)cmd)->objProc != NULL : 1);
} else {
/*
* Do we have an object-specific cmd?
*/
if (unlikely(object->nsPtr && (flags & (NSF_CM_NO_OBJECT_METHOD|NSF_CM_SYSTEM_METHOD)) == 0)) {
cmd = FindMethod(object->nsPtr, methodName);
/*fprintf(stderr, "lookup for per-object method in obj %p method %s nsPtr %p"
" => %p objProc %p\n",
object, methodName, object->nsPtr, cmd, (cmd != NULL) ? ((Command *)cmd)->objProc : NULL);*/
if (cmd != NULL) {
/*
* Reject call when
* a) trying to call a private method without the local flag or ignore permssions, or
* b) trying to call an object with no method interface
*/
if (((flags & (NSF_CM_LOCAL_METHOD|NSF_CM_IGNORE_PERMISSIONS)) == 0
&& (Tcl_Command_flags(cmd) & NSF_CMD_CALL_PRIVATE_METHOD))
) {
cmd = NULL;
} else {
NsfMethodObjSet(interp, methodObj, &NsfObjectMethodObjType,
object, nsfObjectMethodEpoch,
cmd, NULL, flags);
}
}
}
}
#if defined(INHERIT_CLASS_METHODS)
/* this is not optimized yet, since current class might be checked twice,
but easier to maintain */
if ((flags & NSF_CM_NO_OBJECT_METHOD) == 0 && cmd == NULL && NsfObjectIsClass(object)) {
cmd = NsfFindClassMethod(interp, (NsfClass *)object, methodName);
}
#endif
if (likely(cmd == NULL)) {
/* check for an instance method */
NsfClass *currentClass = object->cl;
NsfMethodContext *mcPtr = methodObj->internalRep.twoPtrValue.ptr1;
int nsfInstanceMethodEpoch = rst->instanceMethodEpoch;
#if defined(METHOD_OBJECT_TRACE)
fprintf(stderr, "... method %p/%d '%s' type? %d context? %d nsfMethodEpoch %d => %d\n",
methodObj, methodObj->refCount, ObjStr(methodObj),
methodObj->typePtr == &NsfInstanceMethodObjType,
methodObj->typePtr == &NsfInstanceMethodObjType ? mcPtr->context == currentClass : 0,
methodObj->typePtr == &NsfInstanceMethodObjType ? mcPtr->methodEpoch : 0,
nsfInstanceMethodEpoch );
#endif
if (methodObj->typePtr == &NsfInstanceMethodObjType
&& mcPtr->context == currentClass
&& mcPtr->methodEpoch == nsfInstanceMethodEpoch
&& mcPtr->flags == flags
) {
cmd = mcPtr->cmd;
cl = mcPtr->cl;
#if defined(METHOD_OBJECT_TRACE)
fprintf(stderr, "... use internal rep method %p %s cmd %p (objProc %p) cl %p %s\n",
methodObj, ObjStr(methodObj),
cmd, (cmd != NULL) ?((Command *)cmd)->objProc : NULL,
cl, (cl != NULL) ? ClassName(cl) : ObjectName(object));
#endif
assert((cmd != NULL) ? ((Command *)cmd)->objProc != NULL : 1);
} else {
/*
* We could call PrecedenceOrder(currentClass) to recompute
* currentClass->order on demand, but by construction this is already
* set here.
*/
assert(currentClass->order);
if (unlikely(flags & NSF_CM_SYSTEM_METHOD)) {
NsfClasses *classListPtr = currentClass->order;
/*
* Skip entries until the first base class.
*/
for (; classListPtr; classListPtr = classListPtr->nextPtr) {
if (IsBaseClass(&classListPtr->cl->object)) {break;}
}
cl = SearchPLMethod(classListPtr, methodName, &cmd, NSF_CMD_CALL_PRIVATE_METHOD);
} else {
cl = SearchPLMethod(currentClass->order, methodName, &cmd, NSF_CMD_CALL_PRIVATE_METHOD);
}
if (methodObj->typePtr != Nsf_OT_tclCmdNameType
&& methodObj->typePtr != Nsf_OT_parsedVarNameType
) {
NsfMethodObjSet(interp, methodObj, &NsfInstanceMethodObjType,
currentClass, nsfInstanceMethodEpoch,
cmd, cl, flags);
}
}
}
}
calledObject = object;
/*
* If we have a command, check the permissions, unless
* NSF_CM_IGNORE_PERMISSIONS is set. Note, that NSF_CM_IGNORE_PERMISSIONS is
* set currently for fully qualified cmd names and in nsf::object::dispatch.
*/
if (likely(cmd && (flags & NSF_CM_IGNORE_PERMISSIONS) == 0)) {
int cmdFlags = Tcl_Command_flags(cmd);
#if !defined(NDEBUG)
if (unlikely((cmdFlags & NSF_CMD_CALL_PRIVATE_METHOD)
&& ((flags & NSF_CM_LOCAL_METHOD) == 0))
) {
/*
* Private methods can be only called with the "-local" flag. All cases
* handling private methods should be covered above (e.g. by setting
* NSF_CM_IGNORE_PERMISSIONS, or by filtering private methods in method
* search. So, this branch should never by executed.
*/
Tcl_Panic("Unexpected handling of private method; most likely a caching bug");
cmd = NULL;
} else
#endif
if (unlikely(cmdFlags & NSF_CMD_CALL_PROTECTED_METHOD)) {
NsfObject *lastSelf = GetSelfObj(interp);
/*
* Protected methods can be called, when calling object == called object.
*/
if (unlikely(object != lastSelf)) {
NsfLog(interp, NSF_LOG_WARN, "'%s %s' fails since method %s.%s is protected",
ObjectName(object), methodName, (cl != NULL) ? ClassName(cl) : ObjectName(object), methodName);
/* reset cmd, since it is still unknown */
cmd = NULL;
}
}
}
assert(result == TCL_OK);
if (likely(cmd != NULL)) {
/*
* We found the method to dispatch.
*/
Tcl_Command resolvedCmd = AliasDereference(interp, object, methodName, cmd);
if (unlikely(resolvedCmd == NULL)) {
isValidCsc = 0;
goto exit_object_dispatch;
}
/*
* cscAlloc uses for resolvedCmd for allocating the call stack content and
* sets the IS_NRE flag based on it. We use the original cmd in the
* callstack content structure for introspection.
*/
cscPtr = CscAlloc(interp, &csc, resolvedCmd);
CscInit(cscPtr, calledObject, cl, cmd, frameType, flags, methodName);
if (unlikely(cscPtr->frameType == NSF_CSC_TYPE_ACTIVE_FILTER)) {
/* run filters is not NRE enabled */
cscPtr->flags |= NSF_CSC_IMMEDIATE;
/*
* Setting cscPtr->objc and cscPtr->objv is needed for invoking UNKNOWN
* from ProcMethodDispatchFinalize()
*/
cscPtr->objc = objc-shift;
cscPtr->objv = objv+shift;
}
/*fprintf(stderr, "MethodDispatchCsc %s.%s %p flags %.6x cscPtr %p\n",
ObjectName(object), methodName, object->mixinStack, cscPtr->flags,
cscPtr);*/
result = MethodDispatchCsc(clientData, interp, objc-shift, objv+shift,
resolvedCmd, cscPtr, methodName, &isValidCsc);
if (unlikely(result == TCL_ERROR)) {
/*fprintf(stderr, "Call ErrInProc cl = %p, cmd %p, methodName %s flags %.6x\n",
cl, (cl != NULL) ? cl->object.id : NULL, methodName, (cl != NULL) ? cl->object.flags : 0);*/
result = NsfErrInProc(interp, cmdName,
cl && cl->object.teardown ? cl->object.cmdName : NULL,
methodName);
}
} else {
/*
* The method to be dispatched is unknown
*/
cscPtr = CscAlloc(interp, &csc, cmd);
CscInit(cscPtr, object, cl, cmd, frameType, flags, methodName);
cscPtr->flags |= NSF_CSC_METHOD_IS_UNKNOWN;
if ((flags & NSF_CM_NO_UNKNOWN)) {
cscPtr->flags |= NSF_CSC_CALL_NO_UNKNOWN;
}
cscPtr->objc = objc-shift;
cscPtr->objv = objv+shift;
}
exit_object_dispatch:
if (likely(isValidCsc == 1)) {
/*
* In every situation, we have a cscPtr containing all context information
*/
assert(cscPtr != NULL);
result = ObjectDispatchFinalize(interp, cscPtr, result /*, "immediate" , methodName*/);
CscListRemove(interp, cscPtr, NULL);
CscFinish(interp, cscPtr, result, "non-scripted finalize");
}
/*fprintf(stderr, "ObjectDispatch %s.%s returns %d\n",
ObjectName(object), methodName, result);*/
NsfCleanupObject(object, "ObjectDispatch");
/*fprintf(stderr, "ObjectDispatch call NsfCleanupObject %p DONE\n", object);*/
DECR_REF_COUNT(cmdName); /* must be after last dereferencing of obj */
return result;
}
/*
*----------------------------------------------------------------------
* DispatchDefaultMethod --
*
* Dispatch the default method (when object is called without arguments)
* in case the object system has it defined.
*
* Results:
* result code.
*
* Side effects:
* indirect effects by calling Tcl code
*
*----------------------------------------------------------------------
*/
static int
DispatchDefaultMethod(Tcl_Interp *interp, NsfObject *object,
Tcl_Obj *obj, unsigned int flags) {
int result;
Tcl_Obj *methodObj;
assert(interp != NULL);
assert(object != NULL);
assert(obj != NULL);
if (CallDirectly(interp, object, NSF_o_defaultmethod_idx, &methodObj)) {
Tcl_SetObjResult(interp, object->cmdName);
result = TCL_OK;
} else {
Tcl_Obj *tov[2];
tov[0] = obj;
tov[1] = methodObj;
result = ObjectDispatch(object, interp, 2, tov,
flags|NSF_CM_NO_UNKNOWN|NSF_CM_IGNORE_PERMISSIONS);
}
return result;
}
/*
*----------------------------------------------------------------------
* DispatchDestroyMethod --
*
* Dispatch the method "destroy" in case the object system has it
* defined. During the final cleanup of the object system, the
* destroy is called separately from deallocation. Normally,
* Object.destroy() calls dealloc, which is responsible for the
* physical deallocation.
*
* Results:
* result code
*
* Side effects:
* indirect effects by calling Tcl code
*
*----------------------------------------------------------------------
*/
static int
DispatchDestroyMethod(Tcl_Interp *interp, NsfObject *object, unsigned int flags) {
int result;
Tcl_Obj *methodObj;
NsfRuntimeState *rst = RUNTIME_STATE(interp);
assert(interp != NULL);
assert(object != NULL);
/*
* Don't call destroy after exit handler started physical
* destruction, or when it was called already before
*/
if (rst->exitHandlerDestroyRound == NSF_EXITHANDLER_ON_PHYSICAL_DESTROY
|| (object->flags & NSF_DESTROY_CALLED)
) {
return TCL_OK;
}
/*fprintf(stderr, " DispatchDestroyMethod obj %p flags %.6x active %d\n",
object, object->flags, object->activationCount); */
PRINTOBJ("DispatchDestroyMethod", object);
/* flag, that destroy was called and invoke the method */
object->flags |= NSF_DESTROY_CALLED;
if (CallDirectly(interp, object, NSF_o_destroy_idx, &methodObj)) {
NSF_PROFILE_TIME_DATA;
NSF_PROFILE_CALL(interp, object, Nsf_SystemMethodOpts[NSF_o_destroy_idx]);
result = NsfODestroyMethod(interp, object);
NSF_PROFILE_EXIT(interp, object, Nsf_SystemMethodOpts[NSF_o_destroy_idx]);
} else {
result = CallMethod(object, interp, methodObj, 2, NULL,
NSF_CM_IGNORE_PERMISSIONS|NSF_CSC_IMMEDIATE|flags);
}
if (unlikely(result != TCL_OK)) {
/*
* The object might be already gone here, since we have no stack frame.
* Therefore, we can't even use nsf::current object safely.
*/
NsfErrorContext(interp, "method destroy");
if (++rst->errorCount > 20) {
Tcl_Panic("too many destroy errors occurred. Endless loop?");
}
} else if (rst->errorCount > 0) {
rst->errorCount--;
}
#ifdef OBJDELETION_TRACE
fprintf(stderr, "DispatchDestroyMethod for %p exit\n", object);
#endif
return result;
}
/*
*----------------------------------------------------------------------
* DispatchInitMethod --
*
in case the object system has it
* defined and it was not already called on the object,
*
* Results:
* Result code.
*
* Side effects:
* Indirect effects by calling Tcl code
*
*----------------------------------------------------------------------
*/
static int DispatchInitMethod(Tcl_Interp *interp, NsfObject *object,
int objc, Tcl_Obj *CONST objv[], unsigned int flags)
nonnull(1) nonnull(2);
static int
DispatchInitMethod(Tcl_Interp *interp, NsfObject *object,
int objc, Tcl_Obj *CONST objv[], unsigned int flags) {
int result;
Tcl_Obj *methodObj;
assert(interp != NULL);
assert(object != NULL);
/*
* check, whether init was called already
*/
if (!(object->flags & (NSF_INIT_CALLED|NSF_DESTROY_CALLED))) {
/*
* Flag the call to "init" before the dispatch, such that a call to
* "configure" within init does not clear the already set instance
* variables.
*/
object->flags |= NSF_INIT_CALLED;
if (CallDirectly(interp, object, NSF_o_init_idx, &methodObj)) {
/*fprintf(stderr, "%s init directly\n", ObjectName(object));*/
/*
* Actually, nothing to do.
*/
result = TCL_OK;
} else {
result = CallMethod(object, interp, methodObj, objc+2, objv,
flags|NSF_CM_IGNORE_PERMISSIONS|NSF_CSC_IMMEDIATE);
}
} else {
result = TCL_OK;
}
return result;
}
/*
*----------------------------------------------------------------------
* DispatchUnknownMethod --
*
* Dispatch the method "unknown" in case the object system has it
* defined and the application program contains an unknown handler.
*
* Results:
* result code
*
* Side effects:
* There might be indirect effects by calling Tcl code; also,
* the interp's unknown-state is reset.
*
*----------------------------------------------------------------------
*/
static int
DispatchUnknownMethod(Tcl_Interp *interp, NsfObject *object,
int objc, Tcl_Obj *CONST objv[],
Tcl_Obj *callInfoObj, Tcl_Obj *methodObj, unsigned int flags) {
int result;
Tcl_Obj *unknownObj = NsfMethodObj(object, NSF_o_unknown_idx);
const char *methodName = MethodName(methodObj);
NsfRuntimeState *rst = RUNTIME_STATE(interp);
assert(interp != NULL);
assert(object != NULL);
assert(objv != NULL);
assert(methodObj != NULL);
/*fprintf(stderr, "compare unknownObj %p with methodObj %p '%s' %p %p %s -- %s\n",
unknownObj, methodObj, ObjStr(methodObj), callInfoObj, (callInfoObj != NULL) ?objv[1]:NULL, (callInfoObj != NULL) ?ObjStr(objv[1]) : NULL,
methodName);*/
if (unknownObj && methodObj != unknownObj && (flags & NSF_CSC_CALL_NO_UNKNOWN) == 0) {
/*
* back off and try unknown;
*/
int mustCopy = *(ObjStr(methodObj)) == ':';
ALLOC_ON_STACK(Tcl_Obj*, objc+3, tov);
if (callInfoObj == NULL) {
callInfoObj = (mustCopy != 0) ? Tcl_NewStringObj(methodName, -1) : methodObj;
}
INCR_REF_COUNT(callInfoObj);
/*fprintf(stderr, "calling unknown for %s %s, flags=%.6x,%.6x/%.6x isClass=%d %p %s objc %d\n",
ObjectName(object), ObjStr(methodObj), flags, NSF_CM_NO_UNKNOWN, NSF_CSC_CALL_NO_UNKNOWN,
NsfObjectIsClass(object), object, ObjectName(object), objc);*/
tov[0] = object->cmdName;
tov[1] = unknownObj;
tov[2] = callInfoObj;
if (objc > 1) {
memcpy(tov + 3, objv + 1, sizeof(Tcl_Obj *) * (objc - 1));
}
flags &= ~NSF_CM_NO_SHIFT;
/*fprintf(stderr, "call unknown via dispatch mustCopy %d delegator %p method %s (%s)\n",
mustCopy, delegator, ObjStr(tov[offset]), ObjStr(methodObj));*/
result = ObjectDispatch(object, interp, objc+2, tov,
flags|NSF_CM_NO_UNKNOWN|NSF_CM_IGNORE_PERMISSIONS);
DECR_REF_COUNT(callInfoObj);
FREE_ON_STACK(Tcl_Obj*, tov);
} else { /* no unknown called, this is the built-in unknown handler */
Tcl_Obj *tailMethodObj = NULL;
if (objc > 1 && ((*methodName) == '-' || (unknownObj && objv[0] == unknownObj))) {
int length;
if (Tcl_ListObjLength(interp, objv[1], &length) == TCL_OK && length > 0) {
Tcl_ListObjIndex(interp, objv[1], length - 1, &tailMethodObj);
}
}
result = NsfPrintError(interp, "%s: unable to dispatch method '%s'",
ObjectName(object), (tailMethodObj != NULL) ? MethodName(tailMethodObj) : methodName);
}
/*
* Reset interp state, unknown has been fired.
*/
rst->unknown = 0;
return result;
}
/*
*----------------------------------------------------------------------
* NsfObjDispatch --
*
* This function is called on every object dispatch (when an object
* is invoked). It calls either the passed method, or dispatches
* some default method.
*
* Results:
* Tcl result code.
*
* Side effects:
* Maybe side effects by the cmd called by ParameterCheck()
* or DispatchUnknownMethod()
*
*----------------------------------------------------------------------
*/
#if defined(NRE)
Tcl_ObjCmdProc NsfObjDispatchNRE;
int
NsfObjDispatch(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[]) {
assert(clientData != NULL);
assert(interp != NULL);
assert(objv != NULL);
return Tcl_NRCallObjProc(interp, NsfObjDispatchNRE, clientData, objc, objv);
}
int NsfObjDispatchNRE(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[])
nonnull(1) nonnull(2) nonnull(4);
int
NsfObjDispatchNRE(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[]) {
#else
EXTERN int
NsfObjDispatch(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[]) {
#endif
int result;
#ifdef STACK_TRACE
NsfStackDump(interp);
#endif
assert(clientData != NULL);
assert(interp != NULL);
assert(objv != NULL);
if (likely(objc > 1)) {
/*
* Normal dispatch; we must not use NSF_CSC_IMMEDIATE here,
* otherwise coroutines won't work.
*/
result = ObjectDispatch(clientData, interp, objc, objv, 0);
} else {
result = DispatchDefaultMethod(interp, (NsfObject *)clientData, objv[0], NSF_CSC_IMMEDIATE);
}
return result;
}
/*
* Proc-Creation
*/
/*
*----------------------------------------------------------------------
* AddPrefixToBody --
*
* Create a fresh TclObj* containing the body with an potential prefix.
* The caller has to decrement the ref-count on this Tcl_Obj*.
*
* Results:
* Tcl_Obj
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static Tcl_Obj * AddPrefixToBody(Tcl_Obj *body, int paramDefs, NsfParsedParam *paramPtr) nonnull(1) nonnull(3);
static Tcl_Obj *
AddPrefixToBody(Tcl_Obj *body, int paramDefs, NsfParsedParam *paramPtr) {
Tcl_Obj *resultBody = Tcl_NewObj();
assert(body != NULL);
assert(paramPtr != NULL);
INCR_REF_COUNT2("resultBody", resultBody);
if (paramDefs && paramPtr->possibleUnknowns > 0) {
Tcl_AppendStringsToObj(resultBody, "::nsf::__unset_unknown_args\n", (char *) NULL);
}
Tcl_AppendStringsToObj(resultBody, ObjStr(body), (char *) NULL);
return resultBody;
}
NSF_INLINE static int NoMetaChars(const char *pattern) nonnull(1);
NSF_INLINE static int
NoMetaChars(const char *pattern) {
register char c;
assert(pattern != NULL);
for (c = *pattern; c; c = *++pattern) {
if (c == '*' || c == '?' || c == '[') {
return 0;
}
}
return 1;
}
/***********************************************************************
* Nsf_TypeConverter
***********************************************************************/
/*
*----------------------------------------------------------------------
* Nsf_ConvertToString --
*
* Minimal Nsf_TypeConverter setting the client data (passed to C
* functions) to the ObjStr of the object.
*
* Results:
* Tcl result code, *clientData and **outObjPtr
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int Nsf_ConvertToString(Tcl_Interp *UNUSED(interp), Tcl_Obj *objPtr, Nsf_Param const *UNUSED(pPtr),
ClientData *clientData, Tcl_Obj **outObjPtr)
nonnull(2) nonnull(4) nonnull(5);
int
Nsf_ConvertToString(Tcl_Interp *UNUSED(interp), Tcl_Obj *objPtr, Nsf_Param const *UNUSED(pPtr),
ClientData *clientData, Tcl_Obj **outObjPtr) {
assert(objPtr != NULL);
assert(clientData != NULL);
assert(outObjPtr != NULL);
*clientData = (char *)ObjStr(objPtr);
assert(*outObjPtr == objPtr);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* ConvertToNothing --
*
* Minimalistic Nsf_TypeConverter, even setting the client data (passed to
* C functions).
*
* Results:
* Tcl result code, **outObjPtr
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int ConvertToNothing(Tcl_Interp *UNUSED(interp), Tcl_Obj *objPtr, Nsf_Param const *UNUSED(pPtr),
ClientData *UNUSED(clientData), Tcl_Obj **outObjPtr)
nonnull(2) nonnull(5);
static int
ConvertToNothing(Tcl_Interp *UNUSED(interp), Tcl_Obj *objPtr, Nsf_Param const *UNUSED(pPtr),
ClientData *UNUSED(clientData), Tcl_Obj **outObjPtr) {
assert(objPtr != NULL);
assert(outObjPtr != NULL);
assert(*outObjPtr == objPtr);
*outObjPtr = objPtr;
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* Nsf_ConvertToTclobj --
*
* Nsf_TypeConverter setting the client data (passed to C functions) to the
* passed Tcl_Obj. Optionally this converter checks if the Tcl_Obj has
* permissible content via the Tcl "string is" checkers.
*
* Results:
* Tcl result code, *clientData and **outObjPtr
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
enum stringTypeIdx {StringTypeAlnum, StringTypeAlpha, StringTypeAscii, StringTypeBoolean, StringTypeControl,
StringTypeDigit, StringTypeDouble, StringTypeFalse, StringTypeGraph, StringTypeInteger,
StringTypeLower, StringTypePrint, StringTypePunct, StringTypeSpace, StringTypeTrue,
StringTypeUpper, StringTypeWideinteger, StringTypeWordchar, StringTypeXdigit };
static const char *stringTypeOpts[] = {"alnum", "alpha", "ascii", "boolean", "control",
"digit", "double", "false", "graph", "integer",
"lower", "print", "punct", "space", "true",
"upper", "wideinteger", "wordchar", "xdigit",
NULL};
int Nsf_ConvertToTclobj(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr) nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(5);
int
Nsf_ConvertToTclobj(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr) {
int result;
assert(interp != NULL);
assert(objPtr != NULL);
assert(pPtr != NULL);
assert(clientData != NULL);
assert(outObjPtr != NULL);
if (unlikely(pPtr->converterArg != NULL)) {
Tcl_Obj *objv[4];
/*fprintf(stderr, "ConvertToTclobj %s (must be %s)\n", ObjStr(objPtr), ObjStr(pPtr->converterArg));*/
objv[1] = pPtr->converterArg;
objv[2] = NsfGlobalObjs[NSF_OPTION_STRICT];
objv[3] = objPtr;
result = NsfCallCommand(interp, NSF_STRING_IS, 4, objv);
if (likely(result == TCL_OK)) {
int success;
Tcl_GetIntFromObj(interp, Tcl_GetObjResult(interp), &success);
if (success == 1) {
*clientData = objPtr;
} else {
Tcl_ResetResult(interp);
result = NsfObjErrType(interp, NULL, objPtr, ObjStr(pPtr->converterArg), (Nsf_Param *)pPtr);
}
}
} else {
result = TCL_OK;
#if defined(NSF_WITH_VALUE_WARNINGS)
if (RUNTIME_STATE(interp)->debugLevel > 0) {
const char *value = ObjStr(objPtr);
if (unlikely(*value == '-'
&& (pPtr->flags & NSF_ARG_CHECK_NONPOS)
&& isalpha(*(value+1))
&& strchr(value+1, ' ') == NULL)
) {
/*
* In order to flag a warning, we set the error message and
* return TCL_CONTINUE
*/
(void)NsfPrintError(interp, "value '%s' of parameter '%s' could be a non-positional argument",
value, pPtr->name);
result = TCL_CONTINUE;
}
}
#endif
*clientData = objPtr;
}
assert(*outObjPtr == objPtr);
return result;
}
/*
*----------------------------------------------------------------------
* Nsf_ConvertToBoolean --
*
* Nsf_TypeConverter setting the client data (passed to C functions) to the
* internal representation of a boolean. This converter checks the passed
* value via Tcl_GetBooleanFromObj().
*
* Results:
* Tcl result code, *clientData and **outObjPtr
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int Nsf_ConvertToBoolean(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr)
nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(5);
int
Nsf_ConvertToBoolean(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr) {
int result, bool;
result = Tcl_GetBooleanFromObj(interp, objPtr, &bool);
assert(interp != NULL);
assert(objPtr != NULL);
assert(pPtr != NULL);
assert(clientData != NULL);
assert(outObjPtr != NULL);
if (likely(result == TCL_OK)) {
*clientData = (ClientData)INT2PTR(bool);
} else {
Tcl_ResetResult(interp);
NsfObjErrType(interp, NULL, objPtr, "boolean", pPtr);
}
assert(*outObjPtr == objPtr);
return result;
}
/*
*----------------------------------------------------------------------
* Nsf_ConvertToInt32 --
*
* Nsf_TypeConverter setting the client data (passed to C functions) to the
* internal representation of an integer. This converter checks the passed
* value via Tcl_GetIntFromObj().
*
* Results:
* Tcl result code, *clientData and **outObjPtr
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int Nsf_ConvertToInt32(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr) nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(5);
int
Nsf_ConvertToInt32(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr) {
int result;
int i;
assert(interp != NULL);
assert(objPtr != NULL);
assert(pPtr != NULL);
assert(clientData != NULL);
assert(outObjPtr != NULL);
result = Tcl_GetIntFromObj(interp, objPtr, &i);
if (likely(result == TCL_OK)) {
*clientData = (ClientData)INT2PTR(i);
assert(*outObjPtr == objPtr);
} else {
Tcl_ResetResult(interp);
NsfObjErrType(interp, NULL, objPtr, "int32", (Nsf_Param *)pPtr);
}
return result;
}
/*
*----------------------------------------------------------------------
* Nsf_ConvertToInteger --
*
* Nsf_TypeConverter setting the client data (passed to C functions) to the
* TclObj containing the bignum value. This converter checks the passed
* value via Tcl_GetBignumFromObj().
*
* Results:
* Tcl result code, *clientData and **outObjPtr
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
#include
int Nsf_ConvertToInteger(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr)
nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(5);
int
Nsf_ConvertToInteger(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr) {
int result;
assert(interp != NULL);
assert(objPtr != NULL);
assert(pPtr != NULL);
assert(clientData != NULL);
assert(outObjPtr != NULL);
/*
* Try to short_cut common cases to avoid conversion to bignums, since
* Tcl_GetBignumFromObj returns a value, which has to be freed.
*/
if (objPtr->typePtr == Nsf_OT_intType) {
/*
* We know already, that the value is an int
*/
result = TCL_OK;
} else if (objPtr->typePtr == Nsf_OT_doubleType) {
/*
* We know already, that the value is not an int
*/
result = TCL_ERROR;
} else {
mp_int bignumValue;
/*
* We have to figure out, whether the value is an int. We perform this
* test via Tcl_GetBignumFromObj(), which tries to keep the type small if
* possible (e.g. it might return type "int" or "float" when appropriate.
*/
/*if (objPtr->typePtr != NULL) {
fprintf(stderr, "type is on call %p %s value %s \n",
objPtr->typePtr, (objPtr->typePtr != NULL) ? objPtr->typePtr->name:"NULL", ObjStr(objPtr));
}*/
if ((result = Tcl_GetBignumFromObj(interp, objPtr, &bignumValue)) == TCL_OK) {
mp_clear(&bignumValue);
}
}
if (likely(result == TCL_OK)) {
*clientData = (ClientData)objPtr;
assert(*outObjPtr == objPtr);
} else {
Tcl_ResetResult(interp);
NsfObjErrType(interp, NULL, objPtr, "integer", (Nsf_Param *)pPtr);
}
return result;
}
/*
*----------------------------------------------------------------------
* Nsf_ConvertToSwitch --
*
* Nsf_TypeConverter setting the client data (passed to C functions) to the
* internal representation of an Boolean. This converter simply calls
* Tcl_ConvertToBoolean(). The distinction between "switch" and boolean is
* made on the semantics of which arguments/defaults are passed to the real
* converter.
*
* Results:
* Tcl result code, *clientData and **outObjPtr
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int Nsf_ConvertToSwitch(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr)
nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(5);
int
Nsf_ConvertToSwitch(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr) {
assert(interp != NULL);
assert(objPtr != NULL);
assert(pPtr != NULL);
assert(clientData != NULL);
assert(outObjPtr != NULL);
return Nsf_ConvertToBoolean(interp, objPtr, pPtr, clientData, outObjPtr);
}
/*
*----------------------------------------------------------------------
* Nsf_ConvertToObject --
*
* Nsf_TypeConverter setting the client data (passed to C functions) to the
* internal representation of an object. This converter checks the passed
* value via IsObjectOfType().
*
* Results:
* Tcl result code, *clientData and **outObjPtr
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int Nsf_ConvertToObject(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr)
nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(5);
int
Nsf_ConvertToObject(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr) {
assert(interp != NULL);
assert(objPtr != NULL);
assert(pPtr != NULL);
assert(clientData != NULL);
assert(outObjPtr != NULL);
assert(*outObjPtr == objPtr);
if (likely(GetObjectFromObj(interp, objPtr, (NsfObject **)clientData) == TCL_OK)) {
return IsObjectOfType(interp, (NsfObject *)*clientData, "object", objPtr, pPtr);
}
return NsfObjErrType(interp, NULL, objPtr, "object", (Nsf_Param *)pPtr);
}
/*
*----------------------------------------------------------------------
* Nsf_ConvertToClass --
*
* Nsf_TypeConverter setting the client data (passed to C functions) to the
* internal representation of a class. This converter checks the passed
* value via IsObjectOfType().
*
* Results:
* Tcl result code, *clientData and **outObjPtr
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int Nsf_ConvertToClass(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr)
nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(5);
int
Nsf_ConvertToClass(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr) {
assert(interp != NULL);
assert(objPtr != NULL);
assert(pPtr != NULL);
assert(clientData != NULL);
assert(outObjPtr != NULL);
assert(*outObjPtr == objPtr);
if (likely(GetClassFromObj(interp, objPtr, (NsfClass **)clientData, 0) == TCL_OK)) {
return IsObjectOfType(interp, (NsfObject *)*clientData, "class", objPtr, pPtr);
}
return NsfObjErrType(interp, NULL, objPtr, "class", (Nsf_Param *)pPtr);
}
/*
*----------------------------------------------------------------------
* Nsf_ConvertToFilterreg --
*
* Nsf_TypeConverter setting the client data (passed to C functions) to the
* Tcl_Obj. This nsf type converter checks the passed value via the
* NsfFilterregObjType tcl_obj converter, which provides an internal
* representation for the client function.
*
* Results:
* Tcl result code, *clientData and **outObjPtr
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int Nsf_ConvertToFilterreg(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr)
nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(5);
int
Nsf_ConvertToFilterreg(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr) {
int result;
assert(interp != NULL);
assert(objPtr != NULL);
assert(pPtr != NULL);
assert(clientData != NULL);
assert(outObjPtr != NULL);
assert(*outObjPtr == objPtr);
result = Tcl_ConvertToType(interp, objPtr, &NsfFilterregObjType);
if (likely(result == TCL_OK)) {
*clientData = objPtr;
return result;
}
return NsfObjErrType(interp, NULL, objPtr, "filterreg", (Nsf_Param *)pPtr);
}
/*
*----------------------------------------------------------------------
* Nsf_ConvertToMixinreg --
*
* Nsf_TypeConverter setting the client data (passed to C functions) to the
* Tcl_Obj. This nsf type converter checks the passed value via the
* NsfMixinregObjType tcl_obj converter, which provides an internal
* representation for the client function.
*
* Results:
* Tcl result code, *clientData and **outObjPtr
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int Nsf_ConvertToMixinreg(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr)
nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(5);
int
Nsf_ConvertToMixinreg(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr) {
int result;
assert(interp != NULL);
assert(objPtr != NULL);
assert(pPtr != NULL);
assert(clientData != NULL);
assert(outObjPtr != NULL);
assert(*outObjPtr == objPtr);
result = Tcl_ConvertToType(interp, objPtr, &NsfMixinregObjType);
if (likely(result == TCL_OK)) {
*clientData = objPtr;
return result;
}
return NsfObjErrType(interp, NULL, objPtr, "mixinreg", (Nsf_Param *)pPtr);
}
/*
*----------------------------------------------------------------------
* Nsf_ConvertToParameter --
*
* Nsf_TypeConverter setting the client data (passed to C functions) to the
* Tcl_Obj. This nsf type converter checks if the provided value could be a
* valid parameter spec (i.e. start with no ":", is not an unnamed spec
* "-:int"). This converter performs just a rough syntactic check.
*
* Results:
* Tcl result code, *clientData and **outObjPtr
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int Nsf_ConvertToParameter(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr)
nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(5);
int
Nsf_ConvertToParameter(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr) {
const char *value = ObjStr(objPtr);
assert(interp != NULL);
assert(objPtr != NULL);
assert(pPtr != NULL);
assert(clientData != NULL);
assert(outObjPtr != NULL);
assert(*outObjPtr == objPtr);
/*fprintf(stderr, "convert to parameter '%s' t '%s'\n", value, pPtr->type);*/
if (*value == ':' || (*value == '-' && *(value + 1) == ':')) {
return NsfPrintError(interp, "leading colon in '%s' not allowed in parameter specification '%s'",
ObjStr(objPtr), pPtr->name);
}
*clientData = (char *)ObjStr(objPtr);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* ConvertViaCmd --
*
* Nsf_TypeConverter calling a used-defined checking/conversion
* function. It sets the client data (passed to C functions) to the
* Tcl_Obj.
*
* Results:
* Tcl result code, *clientData and **outObjPtr
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int ConvertViaCmd(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr)
nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(5);
static int
ConvertViaCmd(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *pPtr,
ClientData *clientData, Tcl_Obj **outObjPtr) {
Tcl_Obj *ov[5], *savedResult;
NsfObject *object;
int result, oc;
assert(interp != NULL);
assert(objPtr != NULL);
assert(pPtr != NULL);
assert(clientData != NULL);
assert(outObjPtr != NULL);
/*
* In general, when the converter is used e.g. for result checking,
* we do not want to alter the result just when the converter sets a
* result. So, for non-converter, we save the old result and restore
* it before the return in case of success. Strictly speaking,
* result-overwriting just harms for result-converters, but saving is
* always semantically correct.
*/
if (unlikely((pPtr->flags & NSF_ARG_IS_CONVERTER) == 0)) {
savedResult = Tcl_GetObjResult(interp); /* save the result */
INCR_REF_COUNT(savedResult);
} else {
savedResult = NULL;
}
ov[0] = (pPtr->slotObj != NULL) ? pPtr->slotObj : NsfGlobalObjs[NSF_METHOD_PARAMETER_SLOT_OBJ];
ov[1] = pPtr->converterName;
ov[2] = pPtr->nameObj;
ov[3] = objPtr;
oc = 4;
if (pPtr->converterArg != NULL) {
ov[4] = pPtr->converterArg;
oc++;
}
/*fprintf(stderr, "ConvertViaCmd call converter %s (refCount %d) on %s paramPtr %p arg %p oc %d\n",
ObjStr(pPtr->converterName), pPtr->converterName->refCount, ObjStr(ov[0]),
pPtr, pPtr->converterArg, oc);*/
INCR_REF_COUNT(ov[1]);
INCR_REF_COUNT(ov[2]);
/* result = Tcl_EvalObjv(interp, oc, ov, 0); */
result = GetObjectFromObj(interp, ov[0], &object);
if(likely(result == TCL_OK)) {
result = ObjectDispatch(object, interp, oc, ov, NSF_CSC_IMMEDIATE|NSF_CM_IGNORE_PERMISSIONS);
}
DECR_REF_COUNT(ov[1]);
DECR_REF_COUNT(ov[2]);
/* per default, the input arg is the output arg */
assert(*outObjPtr == objPtr);
if (likely(result == TCL_OK)) {
/*fprintf(stderr, "ConvertViaCmd could convert %s to '%s' paramPtr %p, is_converter %d\n",
ObjStr(objPtr), ObjStr(Tcl_GetObjResult(interp)), pPtr,
pPtr->flags & NSF_ARG_IS_CONVERTER);*/
if (pPtr->flags & NSF_ARG_IS_CONVERTER) {
Tcl_Obj *resultObj;
/*
* If we want to convert, the resulting obj is the result of the
* converter. incr refCount is necessary e.g. for e.g.
*
* return [expr {$value + 1}]
*
* The conversion is just needed, when resultObj differs from the actual
* value in the output vector. Otherwise the conversion and the value
* increment happened already before (and is already recorded in the parse context).
*/
resultObj = Tcl_GetObjResult(interp);
if (*outObjPtr != resultObj) {
INCR_REF_COUNT2("valueObj", resultObj);
*outObjPtr = resultObj;
}
/*fprintf(stderr, "**** NSF_ARG_IS_CONVERTER %p\n", *outObjPtr);*/
}
*clientData = (ClientData) *outObjPtr;
if (savedResult != NULL) {
/*fprintf(stderr, "restore savedResult %p\n", savedResult);*/
Tcl_SetObjResult(interp, savedResult); /* restore the result */
}
}
if (savedResult != NULL) {
DECR_REF_COUNT(savedResult);
}
return result;
}
/*
*----------------------------------------------------------------------
* ConvertToObjpattern --
*
* This function obtains a Tcl_Obj *, which contains the pattern if an Next
* Scripting Object. When this pattern contains no meta characters, we
* check if the object exists. If it exists, the Tcl_Obj is converted to
* the cmd-type. If it does not exit, the function using this pattern will
* fail. If the pattern contains meta characters, we prepend to the pattern
* "::" if necessary to avoid errors, if one specifies a pattern object
* without the prefix. In this case, the patternObj is is of plain type.
* The resulting patternObj has always the refCount incremented, which has
* to be decremented by the caller.x
*
* Results:
* Tcl result code.
*
* Side effects:
* Incremented refCount for the patternObj.
*
*----------------------------------------------------------------------
*/
static int ConvertToObjpattern(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *UNUSED(pPtr),
ClientData *clientData, Tcl_Obj **outObjPtr)
nonnull(1) nonnull(2) nonnull(4) nonnull(5);
static int
ConvertToObjpattern(Tcl_Interp *interp, Tcl_Obj *objPtr, Nsf_Param const *UNUSED(pPtr),
ClientData *clientData, Tcl_Obj **outObjPtr) {
Tcl_Obj *patternObj = objPtr;
const char *pattern = ObjStr(objPtr);
assert(interp != NULL);
assert(objPtr != NULL);
assert(clientData != NULL);
assert(outObjPtr != NULL);
if (NoMetaChars(pattern)) {
/*
* We have no meta characters, we try to check for an existing object
*/
NsfObject *object = NULL;
if (GetObjectFromObj(interp, objPtr, &object) == TCL_OK && object != NULL) {
patternObj = object->cmdName;
}
} else {
/*
* We have a pattern and meta characters, we might have
* to prefix it to ovoid obvious errors: since all object
* names are prefixed with ::, we add this prefix automatically
* to the match pattern, if it does not exist.
*/
if (*pattern != ':' && *pattern+1 != ':') {
patternObj = Tcl_NewStringObj("::", 2);
Tcl_AppendLimitedToObj(patternObj, pattern, -1, INT_MAX, NULL);
}
}
if (patternObj != NULL) {
INCR_REF_COUNT2("patternObj", patternObj);
}
*clientData = (ClientData)patternObj;
/* The following assert does not hold here, since we
have a direct call to the converter
assert(*outObjPtr == objPtr); */
*outObjPtr = objPtr;
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* ParamCheckObj --
*
* Ths function returns a fresh Tcl_Obj in the form of a method name for a
* checker method.
*
* Results:
* Tcl_Obj
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static Tcl_Obj *ParamCheckObj(const char *start, size_t len) nonnull(1) returns_nonnull;
static Tcl_Obj *
ParamCheckObj(const char *start, size_t len) {
Tcl_Obj *checker = Tcl_NewStringObj("type=", 5);
assert(start != NULL);
Tcl_AppendLimitedToObj(checker, start, len, INT_MAX, NULL);
return checker;
}
/*
*----------------------------------------------------------------------
* ParamOptionSetConverter --
*
* Fill in the fields int to the specifed paramPtr structure
* checker method and perform sanity checking.
*
* Results:
* Standard result code
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static int ParamOptionSetConverter(Tcl_Interp *interp, Nsf_Param *paramPtr,
const char *typeName, Nsf_TypeConverter *converter)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static int
ParamOptionSetConverter(Tcl_Interp *interp, Nsf_Param *paramPtr,
const char *typeName, Nsf_TypeConverter *converter) {
assert(interp != NULL);
assert(paramPtr != NULL);
assert(typeName != NULL);
assert(converter != NULL);
if (paramPtr->converter != NULL) {
return NsfPrintError(interp, "refuse to redefine parameter type of '%s' from type '%s' to type '%s'",
paramPtr->name, paramPtr->type, typeName);
}
paramPtr->converter = converter;
paramPtr->nrArgs = 1;
paramPtr->type = typeName;
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* Unescape --
*
* Unescape double commas in the provided Tcl_Obj.
*
* Results:
* None
*
* Side effects:
* Potentially shortend string content
*
*----------------------------------------------------------------------
*/
static void Unescape(Tcl_Obj *objPtr) nonnull(1);
static void
Unescape(Tcl_Obj *objPtr) {
int i, j, l = Tcl_GetCharLength(objPtr);
char *string = ObjStr(objPtr);
assert(objPtr != NULL);
for (i = 0; i < l; i++) {
if (string[i] == ',' && string[i+1] == ',') {
for (j = i+1; j < l; j++) {
string[j] = string[j+1];
}
l--;
i++;
}
}
Tcl_SetObjLength(objPtr, l);
}
/*
*----------------------------------------------------------------------
* ParamOptionParse --
*
* Parse a single parameter option of a parameter. The parameter option
* string is passed in as second argument, the sizes start and remainder
* flag the offsets in the string. As a result, the fields of the parameter
* structure are updated.
*
* Results:
* Tcl result code, updated fields in the Nsf_Param structure.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int ParamOptionParse(Tcl_Interp *interp, const char *argString,
size_t start, size_t optionLength,
int disallowedOptions, Nsf_Param *paramPtr, int unescape)
nonnull(1) nonnull(2) nonnull(6);
static int
ParamOptionParse(Tcl_Interp *interp, const char *argString,
size_t start, size_t optionLength,
int disallowedOptions, Nsf_Param *paramPtr, int unescape) {
const char *dotdot, *option = argString + start;
int result = TCL_OK;
assert(interp != NULL);
assert(argString != NULL);
assert(paramPtr != NULL);
/*fprintf(stderr, "ParamOptionParse name %s, option '%s' (%ld) disallowed %.6x\n",
paramPtr->name, option, start, disallowedOptions);*/
if (strncmp(option, "required", MAX(3, optionLength)) == 0) {
paramPtr->flags |= NSF_ARG_REQUIRED;
} else if (strncmp(option, "optional", MAX(3, optionLength)) == 0) {
paramPtr->flags &= ~NSF_ARG_REQUIRED;
} else if (strncmp(option, "substdefault", 12) == 0) {
paramPtr->flags |= NSF_ARG_SUBST_DEFAULT;
} else if (strncmp(option, "convert", 7) == 0) {
paramPtr->flags |= NSF_ARG_IS_CONVERTER;
} else if (strncmp(option, "initcmd", 7) == 0) {
if (unlikely(paramPtr->flags & (NSF_ARG_CMD|NSF_ARG_ALIAS|NSF_ARG_FORWARD))) {
return NsfPrintError(interp, "parameter option 'initcmd' not valid in this option combination");
}
paramPtr->flags |= NSF_ARG_INITCMD;
} else if (strncmp(option, "cmd", 3) == 0) {
if (unlikely(paramPtr->flags & (NSF_ARG_INITCMD|NSF_ARG_ALIAS|NSF_ARG_FORWARD))) {
return NsfPrintError(interp, "parameter option 'cmd' not valid in this option combination");
}
paramPtr->flags |= NSF_ARG_CMD;
} else if (strncmp(option, "alias", 5) == 0) {
if (unlikely(paramPtr->flags & (NSF_ARG_INITCMD|NSF_ARG_CMD|NSF_ARG_FORWARD))) {
return NsfPrintError(interp, "parameter option 'alias' not valid in this option combination");
}
paramPtr->flags |= NSF_ARG_ALIAS;
} else if (strncmp(option, "forward", 7) == 0) {
if (unlikely(paramPtr->flags & (NSF_ARG_INITCMD|NSF_ARG_CMD|NSF_ARG_ALIAS))) {
return NsfPrintError(interp, "parameter option 'forward' not valid in this option combination");
}
paramPtr->flags |= NSF_ARG_FORWARD;
} else if (strncmp(option, "slotset", 7) == 0) {
if (unlikely(paramPtr->slotObj == NULL)) {
return NsfPrintError(interp, "parameter option 'slotset' must follow 'slot='");
}
paramPtr->flags |= NSF_ARG_SLOTSET;
} else if (strncmp(option, "slotinitialize", 14) == 0) {
if (unlikely(paramPtr->slotObj == NULL)) {
return NsfPrintError(interp, "parameter option 'slotinit' must follow 'slot='");
}
paramPtr->flags |= NSF_ARG_SLOTINITIALIZE;
} else if ((dotdot = strnstr(option, "..", optionLength-1))) {
/* check lower bound */
if (*option == '0') {
paramPtr->flags |= NSF_ARG_ALLOW_EMPTY;
} else if (unlikely(*option != '1')) {
return NsfPrintError(interp, "lower bound of multiplicity in %s not supported", argString);
}
/* check upper bound */
option = dotdot + 2;
if (*option == '*' || *option == 'n') {
if (unlikely((paramPtr->flags & (NSF_ARG_SWITCH)) != 0)) {
return NsfPrintError(interp,
"upper bound of multiplicity of '%c' not allowed for \"switch\"\n", *option);
}
paramPtr->flags |= NSF_ARG_MULTIVALUED;
} else if (*option != '1') {
return NsfPrintError(interp, "upper bound of multiplicity in %s not supported", argString);
}
} else if (strncmp(option, "noarg", 5) == 0) {
if ((paramPtr->flags & NSF_ARG_ALIAS) == 0) {
return NsfPrintError(interp, "parameter option \"noarg\" only allowed for parameter type \"alias\"");
}
paramPtr->flags |= NSF_ARG_NOARG;
paramPtr->nrArgs = 0;
} else if (strncmp(option, "nodashalnum", 11) == 0) {
if (*paramPtr->name == '-') {
return NsfPrintError(interp, "parameter option 'nodashalnum' only allowed for positional parameters");
}
paramPtr->flags |= NSF_ARG_NODASHALNUM;
} else if (strncmp(option, "noconfig", 8) == 0) {
if (disallowedOptions != NSF_DISALLOWED_ARG_OBJECT_PARAMETER) {
return NsfPrintError(interp, "parameter option 'noconfig' only allowed for object parameters");
}
paramPtr->flags |= NSF_ARG_NOCONFIG;
} else if (strncmp(option, "args", 4) == 0) {
if ((paramPtr->flags & NSF_ARG_ALIAS) == 0) {
return NsfPrintError(interp, "parameter option \"args\" only allowed for parameter type \"alias\"");
}
result = ParamOptionSetConverter(interp, paramPtr, "args", ConvertToNothing);
} else if (optionLength >= 4 && strncmp(option, "arg=", 4) == 0) {
if (paramPtr->converter != ConvertViaCmd) {
return NsfPrintError(interp,
"parameter option 'arg=' only allowed for user-defined converter");
}
if (paramPtr->converterArg != NULL) {DECR_REF_COUNT(paramPtr->converterArg);}
paramPtr->converterArg = Tcl_NewStringObj(option + 4, optionLength - 4);
/*
* In case, we know that we have to unescape double commas, do it here...
*/
if (unlikely(unescape)) {
Unescape(paramPtr->converterArg);
}
INCR_REF_COUNT(paramPtr->converterArg);
} else if (strncmp(option, "switch", 6) == 0) {
if (*paramPtr->name != '-') {
return NsfPrintError(interp,
"invalid parameter type \"switch\" for argument \"%s\"; "
"type \"switch\" only allowed for non-positional arguments",
paramPtr->name);
} else if (paramPtr->flags & NSF_ARG_METHOD_INVOCATION) {
return NsfPrintError(interp, "parameter invocation types cannot be used with option 'switch'");
}
result = ParamOptionSetConverter(interp, paramPtr, "switch", Nsf_ConvertToSwitch);
paramPtr->flags |= NSF_ARG_SWITCH;
paramPtr->nrArgs = 0;
assert(paramPtr->defaultValue == NULL);
paramPtr->defaultValue = Tcl_NewBooleanObj(0);
INCR_REF_COUNT(paramPtr->defaultValue);
} else if (strncmp(option, "integer", MAX(3, optionLength)) == 0) {
result = ParamOptionSetConverter(interp, paramPtr, "integer", Nsf_ConvertToInteger);
} else if (strncmp(option, "int32", 5) == 0) {
result = ParamOptionSetConverter(interp, paramPtr, "int32", Nsf_ConvertToInt32);
} else if (strncmp(option, "boolean", 7) == 0) {
result = ParamOptionSetConverter(interp, paramPtr, "boolean", Nsf_ConvertToBoolean);
} else if (strncmp(option, "object", 6) == 0) {
result = ParamOptionSetConverter(interp, paramPtr, "object", Nsf_ConvertToObject);
} else if (strncmp(option, "class", 5) == 0) {
result = ParamOptionSetConverter(interp, paramPtr, "class", Nsf_ConvertToClass);
} else if (strncmp(option, "metaclass", 9) == 0) {
result = ParamOptionSetConverter(interp, paramPtr, "class", Nsf_ConvertToClass);
paramPtr->flags |= NSF_ARG_METACLASS;
} else if (strncmp(option, "baseclass", 9) == 0) {
result = ParamOptionSetConverter(interp, paramPtr, "class", Nsf_ConvertToClass);
paramPtr->flags |= NSF_ARG_BASECLASS;
} else if (strncmp(option, "mixinreg", 8) == 0) {
result = ParamOptionSetConverter(interp, paramPtr, "mixinreg", Nsf_ConvertToMixinreg);
} else if (strncmp(option, "filterreg", 9) == 0) {
result = ParamOptionSetConverter(interp, paramPtr, "filterreg", Nsf_ConvertToFilterreg);
} else if (strncmp(option, "parameter", 9) == 0) {
result = ParamOptionSetConverter(interp, paramPtr, "parameter", Nsf_ConvertToParameter);
} else if (optionLength >= 6 && strncmp(option, "type=", 5) == 0) {
if (paramPtr->converter != Nsf_ConvertToObject &&
paramPtr->converter != Nsf_ConvertToClass)
return NsfPrintError(interp, "parameter option 'type=' only allowed for parameter types 'object' and 'class'");
if (paramPtr->converterArg != NULL) {DECR_REF_COUNT(paramPtr->converterArg);}
paramPtr->converterArg = Tcl_NewStringObj(option + 5, optionLength - 5);
if (unlikely(unescape)) {
Unescape(paramPtr->converterArg);
}
INCR_REF_COUNT(paramPtr->converterArg);
} else if (optionLength >= 6 && strncmp(option, "slot=", 5) == 0) {
if (paramPtr->slotObj != NULL) {DECR_REF_COUNT(paramPtr->slotObj);}
paramPtr->slotObj = Tcl_NewStringObj(option + 5, optionLength - 5);
if (unlikely(unescape)) {
Unescape(paramPtr->slotObj);
}
INCR_REF_COUNT(paramPtr->slotObj);
} else if (optionLength >= 6 && strncmp(option, "method=", 7) == 0) {
if ((paramPtr->flags & (NSF_ARG_ALIAS|NSF_ARG_FORWARD|NSF_ARG_SLOTSET)) == 0) {
return NsfPrintError(interp, "parameter option 'method=' only allowed for parameter "
"types 'alias', 'forward' and 'slotset'");
}
if (paramPtr->method != NULL) {DECR_REF_COUNT(paramPtr->method);}
paramPtr->method = Tcl_NewStringObj(option + 7, optionLength - 7);
if (unlikely(unescape)) {
Unescape(paramPtr->method);
}
INCR_REF_COUNT(paramPtr->method);
} else {
Tcl_DString ds, *dsPtr = &ds;
if (option[0] == '\0') {
NsfLog(interp, NSF_LOG_WARN, "empty parameter option ignored");
return TCL_OK;
}
Tcl_DStringInit(dsPtr);
Tcl_DStringAppend(dsPtr, option, optionLength);
if (paramPtr->converter != NULL) {
NsfPrintError(interp, "parameter option '%s' unknown for parameter type '%s'",
Tcl_DStringValue(dsPtr), paramPtr->type);
Tcl_DStringFree(dsPtr);
return TCL_ERROR;
}
if (Nsf_PointerTypeLookup(interp, Tcl_DStringValue(dsPtr))) {
/*
* Check, if the option refers to a pointer converter
*/
ParamOptionSetConverter(interp, paramPtr, Tcl_DStringValue(dsPtr), Nsf_ConvertToPointer);
Tcl_DStringFree(dsPtr);
} else {
int i, found = -1;
/*
* The option is still unknown, check the Tcl string-is checkers
*/
Tcl_DStringFree(dsPtr);
for (i = 0; stringTypeOpts[i]; i++) {
/*
* Do not allow abbreviations, so the additional strlen checks
* for a full match
*/
if (strncmp(option, stringTypeOpts[i], optionLength) == 0
&& strlen(stringTypeOpts[i]) == optionLength) {
found = i;
break;
}
}
if (found > -1) {
/* converter is stringType */
result = ParamOptionSetConverter(interp, paramPtr, "stringtype", Nsf_ConvertToTclobj);
if (paramPtr->converterArg != NULL) {DECR_REF_COUNT(paramPtr->converterArg);}
paramPtr->converterArg = Tcl_NewStringObj(stringTypeOpts[i], -1);
INCR_REF_COUNT(paramPtr->converterArg);
} else {
/*
* The parameter option is still unknown. We assume that the parameter
* option identifies a user-defined argument checker, implemented as a
* method.
*/
if (paramPtr->converterName != NULL) {
DECR_REF_COUNT2("converterNameObj",paramPtr->converterName);
}
paramPtr->converterName = ParamCheckObj(option, optionLength);
INCR_REF_COUNT2("converterNameObj", paramPtr->converterName);
result = ParamOptionSetConverter(interp, paramPtr, ObjStr(paramPtr->converterName), ConvertViaCmd);
}
}
}
if ((paramPtr->flags & disallowedOptions)) {
return NsfPrintError(interp, "parameter option '%s' not allowed", option);
}
if (unlikely((paramPtr->flags & NSF_ARG_METHOD_INVOCATION) && (paramPtr->flags & NSF_ARG_NOCONFIG))) {
return NsfPrintError(interp, "parameter option 'noconfig' cannot used together with this type of object parameter");
}
return result;
}
/*
*----------------------------------------------------------------------
* ParamParse --
*
* Parse a a single parameter with a possible default provided in the form
* of an Tcl_Obj.
*
* Results:
* Tcl result code
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int ParamParse(Tcl_Interp *interp, Tcl_Obj *procNameObj, Tcl_Obj *arg, int disallowedFlags,
Nsf_Param *paramPtr, int *possibleUnknowns, int *plainParams, int *nrNonposArgs)
nonnull(1) nonnull(3) nonnull(5) nonnull(6) nonnull(7) nonnull(8);
static int
ParamParse(Tcl_Interp *interp, Tcl_Obj *procNameObj, Tcl_Obj *arg, int disallowedFlags,
Nsf_Param *paramPtr, int *possibleUnknowns, int *plainParams, int *nrNonposArgs) {
int result, npac, isNonposArgument, parensCount;
size_t length, j;
const char *argString, *argName;
Tcl_Obj **npav;
assert(interp != NULL);
assert(arg != NULL);
assert(paramPtr != NULL);
assert(possibleUnknowns != NULL);
assert(plainParams != NULL);
assert(nrNonposArgs != NULL);
paramPtr->paramObj = arg;
INCR_REF_COUNT(paramPtr->paramObj);
result = Tcl_ListObjGetElements(interp, arg, &npac, &npav);
if (unlikely(result != TCL_OK || npac < 1 || npac > 2)) {
DECR_REF_COUNT(paramPtr->paramObj);
return NsfPrintError(interp, "wrong # of elements in parameter definition for method '%s'"
" (should be 1 or 2 list elements): %s",
ObjStr(procNameObj), ObjStr(arg));
}
argString = ObjStr(npav[0]);
length = strlen(argString);
/*
* Per default parameter have exactly one argument; types without arguments
* (like "switch") have to set their nrArgs explicitly.
*/
paramPtr->nrArgs = 1;
isNonposArgument = *argString == '-';
if (isNonposArgument != 0) {
argName = argString+1;
(*nrNonposArgs) ++;
} else {
argName = argString;
paramPtr->flags |= NSF_ARG_REQUIRED; /* positional arguments are required unless we have a default */
}
/*fprintf(stderr, "... parsing '%s', name '%s' argString '%s' \n",
ObjStr(arg), argName, argString);*/
/*
* Find the first ':' outside of parens; the name of the parameter might be
* in array syntax, the array index might contain ":", "," etc.
*/
parensCount = 0;
for (j = 0; j < length; j++) {
if (parensCount > 0 && argString[j] == ')') {
parensCount --;
continue;
}
if (argString[j] == '(') {
parensCount ++;
continue;
}
if (parensCount == 0 && argString[j] == ':') {
break;
}
}
if (argString[j] == ':') {
/* we found a ':' */
size_t l, start, end;
int unescape = 0;
/* get parameter name */
STRING_NEW(paramPtr->name, argString, j);
paramPtr->nameObj = Tcl_NewStringObj(argName, (isNonposArgument != 0) ? j-1 : j);
INCR_REF_COUNT(paramPtr->nameObj);
/* skip space at begin */
for (start = j+1; start 0 && isspace((int)argString[end-1]); end--);
result = ParamOptionParse(interp, argString, start, end-start, disallowedFlags, paramPtr, unescape);
unescape = 0;
if (unlikely(result != TCL_OK)) {
goto param_error;
}
l++;
/* skip space from begin */
for (start = l; start 0 && isspace((int)argString[end-1]); end--);
/* process last option */
if (end-start > 0) {
result = ParamOptionParse(interp, argString, start, end-start, disallowedFlags, paramPtr, unescape);
if (unlikely(result != TCL_OK)) {
goto param_error;
}
}
} else {
/* no ':', the whole arg is the name, we have no options */
STRING_NEW(paramPtr->name, argString, length);
if (isNonposArgument != 0) {
paramPtr->nameObj = Tcl_NewStringObj(argName, length-1);
} else {
(*plainParams) ++;
paramPtr->nameObj = Tcl_NewStringObj(argName, length);
}
INCR_REF_COUNT(paramPtr->nameObj);
}
/* if we have two arguments in the list, the second one is a default value */
if (npac == 2) {
if (disallowedFlags & NSF_ARG_HAS_DEFAULT) {
NsfPrintError(interp, "parameter \"%s\" is not allowed to have default \"%s\"",
argString, ObjStr(npav[1]));
goto param_error;
}
/* if we have for some reason already a default value, free it */
if (paramPtr->defaultValue != NULL) {
DECR_REF_COUNT(paramPtr->defaultValue);
}
paramPtr->defaultValue = Tcl_DuplicateObj(npav[1]);
INCR_REF_COUNT(paramPtr->defaultValue);
/*
* The argument will be not required for an invocation, since we
* have a default.
*/
paramPtr->flags &= ~NSF_ARG_REQUIRED;
} else if (paramPtr->flags & NSF_ARG_SUBST_DEFAULT) {
NsfPrintError(interp,
"parameter option substdefault specified for parameter \"%s\""
" without default value", paramPtr->name);
goto param_error;
}
/* postprocessing the parameter options */
if (paramPtr->converter == NULL) {
/*
* If no converter is set, use the default converter
*/
paramPtr->converter = Nsf_ConvertToTclobj;
} else if (paramPtr->converter == ConvertToNothing) {
if (paramPtr->flags & (NSF_ARG_ALLOW_EMPTY|NSF_ARG_MULTIVALUED)) {
NsfPrintError(interp,
"multiplicity settings for variable argument parameter \"%s\" not allowed",
paramPtr->name);
goto param_error;
}
}
/*
* Check for application specific value checkers and converters
*/
/*fprintf(stderr, "parm %s: slotObj %p viaCmd? %d\n",
paramPtr->name, paramPtr->slotObj, paramPtr->converter == ConvertViaCmd);*/
if ((paramPtr->slotObj || paramPtr->converter == ConvertViaCmd) && paramPtr->type) {
const char *converterNameString;
Tcl_Obj *converterNameObj, *slotObj;
NsfObject *paramObject;
Tcl_Command cmd;
NsfClass *pcl = NULL;
slotObj = (paramPtr->slotObj != NULL) ? paramPtr->slotObj : NsfGlobalObjs[NSF_METHOD_PARAMETER_SLOT_OBJ];
result = GetObjectFromObj(interp, slotObj, ¶mObject);
if (unlikely(result != TCL_OK)) {
NsfPrintError(interp, "non-existing slot object \"%s\"", ObjStr(slotObj));
goto param_error;
}
if (paramPtr->converterName == NULL) {
converterNameObj = ParamCheckObj(paramPtr->type, strlen(paramPtr->type));
INCR_REF_COUNT2("converterNameObj",converterNameObj);
} else {
converterNameObj = paramPtr->converterName;
}
converterNameString = ObjStr(converterNameObj);
cmd = ObjectFindMethod(interp, paramObject, converterNameObj, &pcl);
/*fprintf(stderr, "locating %s on %s returns %p (%s)\n",
ObjStr(converterNameObj), ObjectName(paramObject), cmd, ClassName(pcl));*/
if (cmd == NULL) {
if (paramPtr->converter == ConvertViaCmd) {
NsfLog(interp, NSF_LOG_WARN, "Could not find value checker %s defined on %s",
converterNameString, ObjectName(paramObject));
paramPtr->flags |= NSF_ARG_CURRENTLY_UNKNOWN;
/* TODO: for the time being, we do not return an error here */
}
} else if (paramPtr->converter != ConvertViaCmd &&
paramPtr->slotObj &&
strcmp(ObjStr(paramPtr->slotObj),
NsfGlobalStrings[NSF_METHOD_PARAMETER_SLOT_OBJ]) != 0) {
NsfLog(interp, NSF_LOG_WARN, "Checker method %s defined on %s shadows built-in converter",
converterNameString, ObjectName(paramObject));
if (paramPtr->converterName == NULL) {
paramPtr->converterName = converterNameObj;
paramPtr->converter = NULL;
result = ParamOptionSetConverter(interp, paramPtr, converterNameString, ConvertViaCmd);
if (unlikely(result != TCL_OK)) {
if (converterNameObj != paramPtr->converterName) {
DECR_REF_COUNT2("converterNameObj", converterNameObj);
}
goto param_error;
}
}
}
if ((paramPtr->flags & NSF_ARG_IS_CONVERTER) && paramPtr->converter != ConvertViaCmd) {
NsfPrintError(interp, "option 'convert' only allowed for application-defined converters");
if (converterNameObj != paramPtr->converterName) {
DECR_REF_COUNT2("converterNameObj",converterNameObj);
}
goto param_error;
}
if (converterNameObj != paramPtr->converterName) {
DECR_REF_COUNT2("converterNameObj", converterNameObj);
}
}
/*
* If the argument has no arguments and it is positional, it can't be
* required.
*/
if (paramPtr->nrArgs == 0 && *paramPtr->name != '-' &&
paramPtr->flags & NSF_ARG_REQUIRED) {
paramPtr->flags &= ~NSF_ARG_REQUIRED;
}
/*
* If the argument is not required and no default value is
* specified, we have to handle in the client code (eg. in the
* canonical arg handlers for scripted methods) the unknown value
* (e.g. don't set/unset a variable)
*/
if (!(paramPtr->flags & NSF_ARG_REQUIRED) && paramPtr->defaultValue == NULL) {
(*possibleUnknowns)++;
}
return TCL_OK;
param_error:
ParamFree(paramPtr);
paramPtr->name = NULL;
#if !defined(NDEBUG)
/*
* Whenever we return a TCL_ERROR, we expect that the interp result contains
* an error message.
*/
{
const char *errStr = ObjStr(Tcl_GetObjResult(interp));
assert(*errStr != '\0');
}
#endif
return TCL_ERROR;
}
/*
*----------------------------------------------------------------------
* ParamDefsParse --
*
* Parse a list of parameters in the form of Tcl_Objs into a parsedParamPtr
* structure (last argument). The argument allowedOptions is used to flag,
* what parameter options are generally allowed (typically different for
* method and object parameters). Unless forceParamdefs is set, the parsed
* parameter structure is only returned when needed (i.e. when not all
* parameters are plain parameters).
*
* Results:
* Tcl result code, parsedParameter structure in last argument (allocated
* by the caller).
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int ParamDefsParse(Tcl_Interp *interp, Tcl_Obj *procNameObj, Tcl_Obj *paramSpecObjs,
int allowedOptinons, int forceParamdefs, NsfParsedParam *parsedParamPtr)
nonnull(1) nonnull(3) nonnull(6);
static int
ParamDefsParse(Tcl_Interp *interp, Tcl_Obj *procNameObj, Tcl_Obj *paramSpecObjs,
int allowedOptinons, int forceParamdefs, NsfParsedParam *parsedParamPtr) {
Tcl_Obj **argsv;
int result, argsc;
assert(interp != NULL);
assert(paramSpecObjs != NULL);
assert(parsedParamPtr != NULL);
parsedParamPtr->paramDefs = NULL;
parsedParamPtr->possibleUnknowns = 0;
result = Tcl_ListObjGetElements(interp, paramSpecObjs, &argsc, &argsv);
if (unlikely(result != TCL_OK)) {
return NsfPrintError(interp, "cannot break down non-positional args: %s", ObjStr(paramSpecObjs));
}
if (argsc > 0) {
Nsf_Param *paramsPtr, *paramPtr, *lastParamPtr;
int i, possibleUnknowns = 0, plainParams = 0, nrNonposArgs = 0;
NsfParamDefs *paramDefs;
paramPtr = paramsPtr = ParamsNew(argsc);
for (i = 0; i < argsc; i++, paramPtr++) {
result = ParamParse(interp, procNameObj, argsv[i], allowedOptinons,
paramPtr, &possibleUnknowns, &plainParams, &nrNonposArgs);
if (result == TCL_OK && paramPtr->converter == ConvertToNothing && i < argsc-1) {
result = NsfPrintError(interp,
"parameter option \"args\" invalid for parameter \"%s\"; only allowed for last parameter",
paramPtr->name);
}
if (unlikely(result != TCL_OK)) {
ParamsFree(paramsPtr);
return result;
}
/* every parameter must have at least a name set */
assert(paramPtr->name);
}
#if defined(NSF_WITH_VALUE_WARNINGS)
if (nrNonposArgs > 0 && argsc > 1) {
for (i = 0; i < argsc; i++) {
(paramsPtr + i)->flags |= NSF_ARG_CHECK_NONPOS;
}
}
#endif
/*
* If all arguments are good old Tcl arguments, there is no need
* to use the parameter definition structure.
*/
if (plainParams == argsc && !forceParamdefs) {
ParamsFree(paramsPtr);
return TCL_OK;
}
/*
fprintf(stderr, "we need param definition structure for {%s}, argsc %d plain %d\n",
ObjStr(args), argsc, plainParams);
*/
/*
* Check the last argument. If the last argument is named 'args',
* force converter and make it non-required.
*/
lastParamPtr = paramPtr - 1;
if (isArgsString(lastParamPtr->name)) {
lastParamPtr->converter = ConvertToNothing;
lastParamPtr->flags &= ~NSF_ARG_REQUIRED;
}
paramDefs = ParamDefsNew();
paramDefs->paramsPtr = paramsPtr;
paramDefs->nrParams = paramPtr-paramsPtr;
/*fprintf(stderr, "method %s serial %d paramDefs %p ifsize %ld, possible unknowns = %d,\n",
ObjStr(procNameObj), paramDefs->serial,
paramDefs, paramPtr-paramsPtr, possibleUnknowns);*/
parsedParamPtr->paramDefs = paramDefs;
parsedParamPtr->possibleUnknowns = possibleUnknowns;
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* ParameterMethodForwardDispatch --
*
* Dispatch a forwarding method provided via parameter definition.
*
* The current implementation performs for every object
* parameter forward the full cycle of
*
* (a) splitting the spec,
* (b) convert it to a the client data structure,
* (c) invoke forward,
* (d) free client data structure
*
* In the future, it should convert to the client data
* structure just once and free it with the disposal of the
* parameter. This could be achieved
*
* Results:
* Tcl result code
*
* Side effects:
* The called function might side-effect.
*
*----------------------------------------------------------------------
*/
static int ParameterMethodForwardDispatch(Tcl_Interp *interp, NsfObject *object,
Nsf_Param const *paramPtr, Tcl_Obj *newValue,
NsfCallStackContent *cscPtr)
nonnull(1) nonnull(2) nonnull(3);
static int
ParameterMethodForwardDispatch(Tcl_Interp *interp, NsfObject *object,
Nsf_Param const *paramPtr, Tcl_Obj *newValue,
NsfCallStackContent *cscPtr) {
Tcl_Obj **nobjv, *ov[3], *methodObj, *forwardSpec;
ForwardCmdClientData *tcd = NULL;
int result, oc, nobjc;
assert(interp != NULL);
assert(object != NULL);
assert(paramPtr != NULL);
assert(paramPtr->flags & NSF_ARG_FORWARD);
forwardSpec = (paramPtr->method != NULL) ? paramPtr->method : NULL; /* different default? */
if (forwardSpec == NULL) {
return NsfPrintError(interp, "forward: no spec available\n");
}
result = Tcl_ListObjGetElements(interp, forwardSpec, &nobjc, &nobjv);
if (unlikely(result != TCL_OK)) {
return result;
}
methodObj = paramPtr->nameObj;
result = ForwardProcessOptions(interp, methodObj,
NULL /*withDefault*/,
0 /*withEarlybinding*/,
NULL /*withOnerror*/,
NULL /*withMethodprefix*/,
0 /*withFrame*/,
0 /*withVerbose*/,
nobjv[0], nobjc-1, nobjv+1, &tcd);
if (unlikely(result != TCL_OK)) {
if (tcd != NULL) {
ForwardCmdDeleteProc(tcd);
}
return result;
}
/*fprintf(stderr, "parameter %s forward spec <%s> After Options obj %s method %s\n",
ObjStr(paramPtr->nameObj), ObjStr(forwardSpec),
ObjectName(object), ObjStr(methodObj));*/
tcd->object = object;
oc = 1;
ov[0] = methodObj;
if (paramPtr->nrArgs == 1 && newValue) {
ov[oc] = newValue;
oc ++;
}
/*
* Mark the intermittent CSC frame as INACTIVE, so that, e.g.,
* call-stack traversals seeking active frames ignore it.
*/
if (cscPtr != NULL) {
cscPtr->frameType = NSF_CSC_TYPE_INACTIVE;
}
result = NsfForwardMethod(tcd, interp, oc, ov);
ForwardCmdDeleteProc(tcd);
return result;
}
/*
*----------------------------------------------------------------------
* ParameterMethodDispatch --
*
* Dispatch a method provided via parameter definition. The function checks
* the parameter definition, builds a argument list for the function call
* and invokes finally the configured cmd. This function is typically
* called from configure.
*
* Results:
* Tcl result code
*
* Side effects:
* The called function might side-effect.
*
*----------------------------------------------------------------------
*/
static int ParameterMethodDispatch(Tcl_Interp *interp, NsfObject *object,
Nsf_Param *paramPtr, Tcl_Obj *newValue,
CallFrame *uplevelVarFramePtr,
const char *initString,
Tcl_Obj **nextObjPtr,
int nrRemainingArgs)
nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(6) nonnull(7);
static int
ParameterMethodDispatch(Tcl_Interp *interp, NsfObject *object,
Nsf_Param *paramPtr, Tcl_Obj *newValue,
CallFrame *uplevelVarFramePtr,
const char *initString,
Tcl_Obj **nextObjPtr,
int nrRemainingArgs) {
CallFrame *varFramePtr = Tcl_Interp_varFramePtr(interp);
NsfCallStackContent csc, *cscPtr = &csc;
CallFrame frame2, *framePtr2 = &frame2;
int result = TCL_OK;
assert(interp != NULL);
assert(object != NULL);
assert(paramPtr != NULL);
assert(newValue != NULL);
assert(initString != NULL);
assert(nextObjPtr != NULL);
#if 0
{int i;
fprintf(stderr, "ParameterMethodDispatch %s flags %06x nrRemainingArgs %d ",
paramPtr->name, paramPtr->flags, nrRemainingArgs);
for(i = 0; i < nrRemainingArgs; i++) {fprintf(stderr, " [%d]=%p %s,", i, &nextObjPtr[i], ObjStr(nextObjPtr[i]));}
fprintf(stderr, "\n");
}
#endif
/*
* The current call-frame of configure uses an obj-frame, such
* that setvar etc. are able to access variables like "a" as a
* local variable. However, in the init block, we do not like
* that behavior, since this should look like like a proc body.
* So we push yet another call-frame without providing the
* var-frame.
*
* The new frame will have the namespace of the caller to avoid
* the current obj-frame. Nsf_PushFrameCsc() will establish a
* CMETHOD frame.
*/
Tcl_Interp_varFramePtr(interp) = varFramePtr->callerVarPtr;
cscPtr->flags = 0;
CscInit(cscPtr, object, object->cl /*cl*/, NULL /*cmd*/,
NSF_CSC_TYPE_PLAIN, 0, NsfGlobalStrings[NSF_CONFIGURE]);
Nsf_PushFrameCsc(interp, cscPtr, framePtr2);
if (paramPtr->flags & (NSF_ARG_INITCMD|NSF_ARG_CMD)) {
/* cscPtr->cmdPtr = NSFindCommand(interp, "::eval"); */
result = Tcl_EvalObjEx(interp, newValue, TCL_EVAL_DIRECT);
} else if (paramPtr->flags & NSF_ARG_ALIAS) {
Tcl_Obj *methodObj, **ovPtr, *ov0;
static Tcl_Obj *constantObj = NULL;
const char *methodString;
int oc = 0;
/*
* Restore the variable frame context as found at the original call
* site of configure(). Note that we do not have to revert this
* context change when leaving this configure() context because a
* surrounding [uplevel] will correct the call-stack context for us ...
*/
if (uplevelVarFramePtr != NULL) {
Tcl_Interp_varFramePtr(interp) = uplevelVarFramePtr;
}
/*
* Mark the intermittent CSC frame as INACTIVE, so that, e.g.,
* call-stack traversals seeking active frames ignore it.
*/
cscPtr->frameType = NSF_CSC_TYPE_INACTIVE;
/*
* If parameter option "method=" was given, use it as method name
*/
methodObj = (paramPtr->method != NULL) ? paramPtr->method : paramPtr->nameObj;
methodString = ObjStr(methodObj);
/*fprintf(stderr, "ALIAS %s, nrargs %d converter %p ConvertToNothing %d oc %d\n",
paramPtr->name, paramPtr->nrArgs, paramPtr->converter,
paramPtr->converter == ConvertToNothing,
oc);*/
if (paramPtr->converter == ConvertToNothing) {
/*
* We are using the varargs interface; pass all remaining args into
* the called method.
*/
if (newValue == paramPtr->defaultValue) {
/*
* Use the default.
*/
if (Tcl_ListObjGetElements(interp, paramPtr->defaultValue, &oc, &ovPtr) != TCL_OK) {
goto method_arg_done;
}
ov0 = *ovPtr;
ovPtr ++;
} else {
/*
* Use actual args.
*/
ov0 = *nextObjPtr;
/*fprintf(stderr, "ALIAS use actual args oc %d ov0 <%s> nextObjPtr %p %p\n",
nrRemainingArgs, ObjStr(ov0), nextObjPtr, nextObjPtr+1);*/
ovPtr = nextObjPtr+1;
oc = nrRemainingArgs;
}
} else {
/*
* A simple alias, receives no arg (when noarg was specified) or a
* single argument (which might be the default value).
*/
int moc = 1;
Tcl_Obj **movPtr = NULL;
ov0 = NULL;
ovPtr = &constantObj;
if (Tcl_ListObjGetElements(interp, methodObj, &moc, &movPtr) == TCL_OK) {
if (moc != 2) {
oc = 0;
if (unlikely(moc > 2)) {
NsfLog(interp, NSF_LOG_WARN, "max 2 words are currently allowed in methodName <%s>", methodString);
}
} else {
oc = 1;
methodObj = movPtr[0];
ov0 = movPtr[1];
}
}
if (paramPtr->nrArgs == 1) {
oc++;
if (oc == 1) {
ov0 = newValue;
} else {
ovPtr = &newValue;
}
}
}
/*
* Check, if we have an object parameter alias for the constructor.
* Since we require the object system for the current object to
* determine its object system configuration, we can't do this at
* parameter compile time.
*/
if (*initString == *methodString && strcmp(initString, methodString) == 0) {
result = DispatchInitMethod(interp, object, oc, &ov0, 0);
} else {
/*fprintf(stderr, "... call alias %s with methodObj %s.%s oc %d, nrArgs %d '%s'\n",
paramPtr->name, ObjectName(object), ObjStr(methodObj), oc,
paramPtr->nrArgs, ObjStr(newValue));*/
#if !defined(NDEBUG)
if (oc > 2) {
assert(ovPtr != NULL);
assert(ovPtr != &constantObj);
assert(ISOBJ(ovPtr[oc-2]));
}
#endif
Tcl_ResetResult(interp);
result = NsfCallMethodWithArgs(interp, (Nsf_Object*)object, methodObj,
ov0, oc, ovPtr,
NSF_CSC_IMMEDIATE|NSF_CM_IGNORE_PERMISSIONS);
}
} else {
/* must be NSF_ARG_FORWARD */
assert(paramPtr->flags & NSF_ARG_FORWARD);
result = ParameterMethodForwardDispatch(interp, object,
paramPtr, newValue, cscPtr);
}
method_arg_done:
/*
* Pop previously stacked frame for eval context and set the
* varFramePtr to the previous value.
*/
Nsf_PopFrameCsc(interp, framePtr2);
CscListRemove(interp, cscPtr, NULL);
CscFinish(interp, cscPtr, result, "converter object frame");
Tcl_Interp_varFramePtr(interp) = varFramePtr;
/* fprintf(stderr, "NsfOConfigureMethod_ attribute %s evaluated %s => (%d)\n",
ObjStr(paramPtr->nameObj), ObjStr(newValue), result);*/
if (likely(result == TCL_OK)) {
if (paramPtr->flags & NSF_ARG_CMD && RUNTIME_STATE(interp)->doKeepcmds) {
Tcl_ObjSetVar2(interp, NsfGlobalObjs[NSF_ARRAY_CMD], paramPtr->nameObj, newValue, 0);
}
}
return result;
}
/*
*----------------------------------------------------------------------
* MakeProc --
*
* Define a scripted function via the ObjCmd "proc".
*
* Results:
* Tcl result code
*
* Side effects:
* Defined function or exception.
*
*----------------------------------------------------------------------
*/
static int MakeProc(Tcl_Namespace *nsPtr, NsfAssertionStore *aStore, Tcl_Interp *interp,
Tcl_Obj *nameObj, Tcl_Obj *args, Tcl_Obj *body, Tcl_Obj *precondition,
Tcl_Obj *postcondition, NsfObject *defObject, NsfObject *regObject,
int withPer_object, int withInner_namespace, int checkAlwaysFlag)
nonnull(1) nonnull(3) nonnull(4) nonnull(5) nonnull(6) nonnull(9);
static int
MakeProc(Tcl_Namespace *nsPtr, NsfAssertionStore *aStore, Tcl_Interp *interp,
Tcl_Obj *nameObj, Tcl_Obj *args, Tcl_Obj *body, Tcl_Obj *precondition,
Tcl_Obj *postcondition, NsfObject *defObject, NsfObject *regObject,
int withPer_object, int withInner_namespace, int checkAlwaysFlag) {
Tcl_CallFrame frame, *framePtr = &frame;
const char *methodName = ObjStr(nameObj);
NsfParsedParam parsedParam;
Tcl_Obj *ov[4];
int result;
assert(nsPtr != NULL);
assert(interp != NULL);
assert(nameObj != NULL);
assert(args != NULL);
assert(body != NULL);
assert(defObject != NULL);
assert(*methodName != ':');
if (regObject == NULL) {regObject = defObject;}
/* Check, if we are allowed to redefine the method */
result = CanRedefineCmd(interp, nsPtr, defObject, methodName, 0);
if (likely(result == TCL_OK)) {
/* Yes, we can! ...so obtain an method parameter definitions */
result = ParamDefsParse(interp, nameObj, args,
NSF_DISALLOWED_ARG_METHOD_PARAMETER, 0,
&parsedParam);
}
if (unlikely(result != TCL_OK)) {
return result;
}
ov[0] = NULL; /*objv[0];*/
ov[1] = nameObj;
if (parsedParam.paramDefs != NULL) {
Nsf_Param *pPtr;
Tcl_Obj *argList = Tcl_NewListObj(0, NULL);
for (pPtr = parsedParam.paramDefs->paramsPtr; pPtr->name; pPtr++) {
if (*pPtr->name == '-') {
Tcl_ListObjAppendElement(interp, argList, Tcl_NewStringObj(pPtr->name+1, -1));
} else {
Tcl_ListObjAppendElement(interp, argList, Tcl_NewStringObj(pPtr->name, -1));
}
}
ov[2] = argList;
INCR_REF_COUNT(ov[2]);
/*fprintf(stderr, "final arglist = <%s>\n", ObjStr(argList)); */
ov[3] = AddPrefixToBody(body, 1, &parsedParam);
} else { /* no parameter handling needed */
ov[2] = args;
ov[3] = AddPrefixToBody(body, 0, &parsedParam);
}
Tcl_PushCallFrame(interp, (Tcl_CallFrame *)framePtr, nsPtr, 0);
/*
* Create the method in the provided namespace.
*/
result = Tcl_ProcObjCmd(NULL, interp, 4, ov);
if (likely(result == TCL_OK)) {
/* retrieve the defined proc */
Proc *procPtr = FindProcMethod(nsPtr, methodName);
if (procPtr != NULL) {
/* modify the cmd of the proc to set the current namespace for the body */
if (withInner_namespace == 1) {
/*
* Set the namespace of the method as inside of the class.
*/
if (regObject->nsPtr == NULL) {
MakeObjNamespace(interp, regObject);
}
/*fprintf(stderr, "obj %s\n", ObjectName(defObject));
fprintf(stderr, "ns %p defObject->ns %p\n", nsPtr, defObject->nsPtr);
fprintf(stderr, "ns %s defObject->ns %s\n", nsPtr->fullName, defObject->nsPtr->fullName);
fprintf(stderr, "old %s\n", procPtr->cmdPtr->nsPtr->fullName);*/
procPtr->cmdPtr->nsPtr = (Namespace *)regObject->nsPtr;
} else {
/*
* Set the namespace of the method to the same namespace the cmd of
* the defObject has.
*/
procPtr->cmdPtr->nsPtr = ((Command *)regObject->id)->nsPtr;
}
ParamDefsStore(interp, (Tcl_Command)procPtr->cmdPtr, parsedParam.paramDefs, checkAlwaysFlag);
Tcl_SetObjResult(interp, MethodHandleObj(defObject, withPer_object, methodName));
result = TCL_OK;
}
}
Tcl_PopCallFrame(interp);
#if defined(NSF_WITH_ASSERTIONS)
if (result == TCL_OK && (precondition || postcondition)) {
AssertionAddProc(interp, methodName, aStore, precondition, postcondition);
}
#endif
if (parsedParam.paramDefs != NULL) {
DECR_REF_COUNT(ov[2]);
}
DECR_REF_COUNT2("resultBody", ov[3]);
return result;
}
/*
*----------------------------------------------------------------------
* MakeMethod --
*
* Define a scripted method to be defined on defObject and registered on
* regObject (if specified). This function handles as well assertions.
*
* Results:
* Tcl result code
*
* Side effects:
* Defined method or exception.
*
*----------------------------------------------------------------------
*/
static int MakeMethod(Tcl_Interp *interp, NsfObject *defObject, NsfObject *regObject,
NsfClass *cl, Tcl_Obj *nameObj, Tcl_Obj *args, Tcl_Obj *body,
Tcl_Obj *precondition, Tcl_Obj *postcondition,
int withInner_namespace, int checkAlwaysFlag)
nonnull(1) nonnull(2) nonnull(5) nonnull(6) nonnull(7);
static int
MakeMethod(Tcl_Interp *interp, NsfObject *defObject, NsfObject *regObject,
NsfClass *cl, Tcl_Obj *nameObj, Tcl_Obj *args, Tcl_Obj *body,
Tcl_Obj *precondition, Tcl_Obj *postcondition,
int withInner_namespace, int checkAlwaysFlag) {
const char *argsStr = ObjStr(args), *bodyStr = ObjStr(body), *nameStr = ObjStr(nameObj);
int result;
assert(interp != NULL);
assert(defObject != NULL);
assert(nameObj != NULL);
assert(args != NULL);
assert(body != NULL);
if (precondition != NULL && postcondition == NULL) {
return NsfPrintError(interp, "%s method '%s'; when specifying a precondition (%s)"
" a postcondition must be specified as well",
ClassName(cl), nameStr, ObjStr(precondition));
}
if (*argsStr == 0 && *bodyStr == 0) {
/*
* Both, args and body are empty strings. This means we should delete the
* method.
*/
if (RUNTIME_STATE(interp)->exitHandlerDestroyRound == NSF_EXITHANDLER_OFF) {
/*
* Don't delete methods via scripting during shutdown
*/
result = (cl != NULL) ?
NsfRemoveClassMethod(interp, (Nsf_Class *)cl, nameStr) :
NsfRemoveObjectMethod(interp, (Nsf_Object *)defObject, nameStr);
} else {
/* fprintf(stderr, "don't delete method %s during shutdown\n", nameStr); */
result = TCL_OK;
}
} else {
#if defined(NSF_WITH_ASSERTIONS)
NsfAssertionStore *aStore = NULL;
if (precondition != NULL || postcondition != NULL) {
if (cl != NULL) {
NsfClassOpt *opt = NsfRequireClassOpt(cl);
if (opt->assertions == NULL) {
opt->assertions = AssertionCreateStore();
}
aStore = opt->assertions;
} else {
NsfObjectOpt *opt = NsfRequireObjectOpt(defObject);
if (opt->assertions == NULL) {
opt->assertions = AssertionCreateStore();
}
aStore = opt->assertions;
}
}
result = MakeProc((cl != NULL) ? cl->nsPtr : defObject->nsPtr, aStore,
interp, nameObj, args, body, precondition, postcondition,
defObject, regObject, cl == NULL, withInner_namespace,
checkAlwaysFlag);
#else
if (precondition != NULL) {
NsfLog(interp, NSF_LOG_WARN, "Precondition %s provided, but not compiled with assertion enabled",
ObjStr(precondition));
} else if (postcondition != NULL) {
NsfLog(interp, NSF_LOG_WARN, "Postcondition %s provided, but not compiled with assertion enabled",
ObjStr(postcondition));
}
result = MakeProc((cl != NULL) ? cl->nsPtr : defObject->nsPtr, NULL,
interp, nameObj, args, body, NULL, NULL,
defObject, regObject, cl == NULL, withInner_namespace,
checkAlwaysFlag);
#endif
}
if (cl != NULL) {
NsfInstanceMethodEpochIncr("MakeMethod");
/* could be a filter or filter inheritance ... update filter orders */
if (FilterIsActive(interp, nameStr)) {
NsfClasses *subClasses = TransitiveSubClasses(cl);
if (subClasses != NULL) {
FilterInvalidateObjOrders(interp, subClasses);
NsfClassListFree(subClasses);
}
}
} else {
NsfObjectMethodEpochIncr("MakeMethod");
/* could be a filter => recompute filter order */
FilterComputeDefined(interp, defObject);
}
return result;
}
/**************************************************************************
* Begin Definition of nsf::proc (Tcl Procs with Parameter handling)
**************************************************************************/
/*
*----------------------------------------------------------------------
* NsfProcStubDeleteProc --
*
* Tcl_CmdDeleteProc for NsfProcStubs. Is called, whenever a
* NsfProcStub is deleted and frees the associated client data.
*
* Results:
* None.
*
* Side effects:
* Frees client-data
*
*----------------------------------------------------------------------
*/
static void
NsfProcStubDeleteProc(ClientData clientData) {
NsfProcClientData *tcd = clientData;
/*fprintf(stderr, "NsfProcStubDeleteProc received %p\n", clientData);
fprintf(stderr, "... procName %s paramDefs %p\n", ObjStr(tcd->procName), tcd->paramDefs);*/
DECR_REF_COUNT2("procNameObj",tcd->procName);
if (tcd->cmd != NULL) {
NsfCommandRelease(tcd->cmd);
}
/* tcd->paramDefs is freed by NsfProcDeleteProc() */
FREE(NsfProcClientData, tcd);
}
/*
*----------------------------------------------------------------------
* InvokeShadowedProc --
*
* Call the proc specified in objc/objv; procNameObj should be used
* for error messages.
*
* Results:
* Tcl result code.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int InvokeShadowedProc(Tcl_Interp *interp, Tcl_Obj *procNameObj, Tcl_Command cmd, ParseContext *pcPtr)
nonnull(1) nonnull(2) nonnull(4) nonnull(3);
static int
InvokeShadowedProc(Tcl_Interp *interp, Tcl_Obj *procNameObj, Tcl_Command cmd, ParseContext *pcPtr) {
Tcl_Obj *CONST *objv;
int objc, result;
const char *fullMethodName = ObjStr(procNameObj);
Tcl_CallFrame *framePtr;
Proc *procPtr;
#if defined(NSF_PROFILE)
struct timeval trt;
NsfRuntimeState *rst = RUNTIME_STATE(interp);
if (rst->doProfile != 0) {
gettimeofday(&trt, NULL);
}
#endif
assert(interp != NULL);
assert(procNameObj != NULL);
assert(cmd != NULL);
assert(pcPtr != NULL);
objv = pcPtr->full_objv;
objc = pcPtr->objc+1;
CheckCStack(interp, "nsfProc", fullMethodName);
/*
* The code below is derived from the scripted method dispatch and just
* slightly adapted to remove object dependencies.
*/
/*fprintf(stderr, "fullMethodName %s epoch %d\n", fullMethodName, Tcl_Command_cmdEpoch(cmd));*/
if (Tcl_Command_cmdEpoch(cmd)) {
#if 1
/*
* It seems, as someone messed around with the shadowed proc. For now, we
* give up.
*/
return NsfPrintError(interp, "command '%s' is epoched", fullMethodName);
#else
/*
* We could refetch the command ...
*/
cmd = Tcl_GetCommandFromObj(interp, procNameObj);
if (unlikely(cmd == NULL)) {
return NsfPrintError(interp, "cannot lookup command '%s'", fullMethodName);
}
if (unlikely(!CmdIsProc(cmd))) {
return NsfPrintError(interp, "command '%s' is not a proc", fullMethodName);
}
/*
* ... and update the refCounts
*/
NsfCommandRelease(tcd->cmd);
tcd->cmd = cmd;
NsfCommandPreserve(tcd->cmd);
#endif
}
#if defined(NSF_PROFILE)
if (rst->doTrace) {
NsfProfileTraceCallAppend(interp, fullMethodName);
}
#endif
procPtr = (Proc *)Tcl_Command_objClientData(cmd);
result = TclPushStackFrame(interp, &framePtr,
(Tcl_Namespace *) procPtr->cmdPtr->nsPtr,
(FRAME_IS_PROC));
if (likely(result == TCL_OK)) {
unsigned int dummy = 0;
result = ByteCompiled(interp, &dummy, procPtr, fullMethodName);
}
if (unlikely(result != TCL_OK)) {
/* todo: really? error msg? */
return result;
}
Tcl_CallFrame_objc(framePtr) = objc;
Tcl_CallFrame_objv(framePtr) = objv;
Tcl_CallFrame_procPtr(framePtr) = procPtr;
#if defined(NRE)
/*fprintf(stderr, "CALL TclNRInterpProcCore proc '%s' %s nameObj %p %s\n",
ObjStr(objv[0]), fullMethodName, procNameObj, ObjStr(procNameObj));*/
Tcl_NRAddCallback(interp, ProcDispatchFinalize,
(ClientData)fullMethodName, pcPtr,
# if defined(NSF_PROFILE)
(ClientData)(unsigned long)trt.tv_usec,
(ClientData)(unsigned long)trt.tv_sec
# else
NULL,
NULL
# endif
);
result = TclNRInterpProcCore(interp, procNameObj, 1, &MakeProcError);
#else
{
ClientData data[4] = {
(ClientData)fullMethodName,
pcPtr,
# if defined(NSF_PROFILE)
(ClientData)(unsigned long)trt.tv_usec,
(ClientData)(unsigned long)trt.tv_sec
# else
NULL,
NULL
# endif
};
result = TclObjInterpProcCore(interp, procNameObj, 1, &MakeProcError);
result = ProcDispatchFinalize(data, interp, result);
}
#endif
return result;
}
/*
*----------------------------------------------------------------------
* NsfProcStub --
*
* Tcl_ObjCmdProc implementing Proc Stubs. This function processes
* the argument list in accordance with the parameter definitions
* and calls in case of success the shadowed proc.
*
* Results:
* Tcl return code.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int NsfProcStub(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[])
nonnull(2) nonnull(4) nonnull(1);
int
NsfProcStub(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[]) {
NsfProcClientData *tcd;
int result;
assert(clientData != NULL);
assert(interp != NULL);
assert(objv != NULL);
tcd = clientData;
/*fprintf(stderr, "NsfProcStub %s is called, tcd %p\n", ObjStr(objv[0]), tcd);*/
if (likely(tcd->paramDefs && tcd->paramDefs->paramsPtr)) {
ParseContext *pcPtr = (ParseContext *) NsfTclStackAlloc(interp, sizeof(ParseContext), "parse context");
#if 0
/* i see no difference from tcl */
ALLOC_ON_STACK(Tcl_Obj*, objc, tov);
/*
* We have to substitute the first element of objv with the name
* of the function to be called. Since objv is immutable, we have
* to copy the full argument vector and replace the element on
* position [0]
*/
memcpy(tov+1, objv+1, sizeof(Tcl_Obj *)*(objc-1));
tov[0] = tcd->procName;
#endif
/* If the argument parsing is ok, the shadowed proc will be called */
result = ProcessMethodArguments(pcPtr, interp, NULL,
tcd->checkAlwaysFlag|NSF_ARGPARSE_FORCE_REQUIRED,
tcd->paramDefs, objv[0],
objc, objv);
if (likely(result == TCL_OK)) {
result = InvokeShadowedProc(interp, tcd->procName, tcd->cmd, pcPtr);
} else {
/*Tcl_Obj *resultObj = Tcl_GetObjResult(interp);
fprintf(stderr, "NsfProcStub: incorrect arguments (%s)\n", ObjStr(resultObj));*/
ParseContextRelease(pcPtr);
NsfTclStackFree(interp, pcPtr, "release parse context");
}
/*FREE_ON_STACK(Tcl_Obj *, tov);*/
} else {
fprintf(stderr, "no parameters\n");
assert(0); /* should never happen */
result = TCL_ERROR;
}
return result;
}
/*
*----------------------------------------------------------------------
* NsfProcAdd --
*
* Add a command for implementing a Tcl proc with next scripting
* parameter handling.
*
* For the time being, this function adds two things, (a) a Tcl cmd
* functioning as a stub for the argument processing (in accordance
* with the parameter definitions) and (b) the shadowed Tcl proc
* with a mutated name.
*
* TODO: the current 1 cmd + 1 proc implementation is not robust
* against renaming and partial deletions (deletion of the
* stub).
*
* Results:
* Tcl return code.
*
* Side effects:
* Adding one Tcl command and one Tcl proc
*
*----------------------------------------------------------------------
*/
static int NsfProcAdd(Tcl_Interp *interp, NsfParsedParam *parsedParamPtr,
const char *procName, Tcl_Obj *body,
int with_ad, int with_checkAlways) nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static int
NsfProcAdd(Tcl_Interp *interp, NsfParsedParam *parsedParamPtr,
const char *procName, Tcl_Obj *body,
int with_ad, int with_checkAlways) {
NsfParamDefs *paramDefs;
Nsf_Param *paramPtr;
NsfProcClientData *tcd;
Tcl_Namespace *cmdNsPtr;
Tcl_Obj *argList, *procNameObj, *ov[4];
Tcl_DString ds, *dsPtr = &ds;
int result, checkAlwaysFlag;
Tcl_Command cmd;
assert(interp != NULL);
assert(parsedParamPtr != NULL);
assert(procName != NULL);
assert(body != NULL);
Tcl_DStringInit(dsPtr);
/*
* Create a fully qualified procName
*/
if (*procName != ':') {
DStringAppendQualName(dsPtr, Tcl_GetCurrentNamespace(interp), procName);
procName = Tcl_DStringValue(dsPtr);
}
/*
* Create first the ProcStub to obtain later its namespace, which is
* needed as the inner namespace of the shadowed proc.
*/
tcd = NEW(NsfProcClientData);
cmd = Tcl_CreateObjCommand(interp, procName, NsfProcStub,
tcd, NsfProcStubDeleteProc);
if (unlikely(cmd == NULL)) {
/*
* For some reason, the command could not be created. Let us hope,
* we have a useful error message.
*/
Tcl_DStringFree(dsPtr);
FREE(NsfProcClientData, tcd);
return TCL_ERROR;
}
checkAlwaysFlag = (with_checkAlways != 0) ? NSF_ARGPARSE_CHECK : 0;
cmdNsPtr = Tcl_Command_nsPtr(cmd);
/*
* Storing param defs is actually not needed to be stored, since the stub
* receives paramters + flag via client data... but it is needed for
* introspection.
*/
paramDefs = parsedParamPtr->paramDefs;
ParamDefsStore(interp, cmd, paramDefs, checkAlwaysFlag);
/*fprintf(stderr, "NsfProcAdd procName '%s' define cmd '%s' %p in namespace %s\n",
procName, Tcl_GetCommandName(interp, cmd), cmd, cmdNsPtr->fullName);*/
/*
* Let us create the shadowed Tcl proc, which is stored under
* ::nsf::procs::*. First build the fully qualified name
* procNameObj.
*/
Tcl_DStringSetLength(dsPtr, 0);
Tcl_DStringAppend(dsPtr, "::nsf::procs", -1);
DStringAppendQualName(dsPtr, cmdNsPtr, Tcl_GetCommandName(interp, cmd));
procNameObj = Tcl_NewStringObj(Tcl_DStringValue(dsPtr), Tcl_DStringLength(dsPtr));
INCR_REF_COUNT2("procNameObj", procNameObj); /* will be freed, when NsfProcStub is deleted */
/*
* Make sure to create the target namespace under "::nsf::procs::", if
* it does not exist.
*/
{
Namespace *nsPtr, *dummy1Ptr, *dummy2Ptr;
const char *dummy;
/* create the target namespace, if it does not exist */
TclGetNamespaceForQualName(interp, ObjStr(procNameObj), NULL, TCL_CREATE_NS_IF_UNKNOWN,
&nsPtr, &dummy1Ptr,
&dummy2Ptr, &dummy);
}
/*
* Create the client data, which links the stub cmd with the proc.
*/
tcd->procName = procNameObj;
tcd->paramDefs = paramDefs;
tcd->with_ad = with_ad;
tcd->checkAlwaysFlag = checkAlwaysFlag;
tcd->cmd = NULL;
/*fprintf(stderr, "NsfProcAdd %s tcd %p paramdefs %p\n",
ObjStr(procNameObj), tcd, tcd->paramDefs);*/
/*
* Build an argument list for the shadowed proc.
*/
argList = Tcl_NewListObj(0, NULL);
INCR_REF_COUNT(argList);
for (paramPtr = paramDefs->paramsPtr; paramPtr->name; paramPtr++) {
if (*paramPtr->name == '-') {
Tcl_Obj *varNameObj = Tcl_NewStringObj(paramPtr->name+1, -1);
/*
* If we have the -ad (for ars digita) flag set, we provide the
* OpenACS semantics. This is (a) to use the name "boolean" for
* a switch and (b) to name the automatic variable with the
* prefix "_p".
*/
if (with_ad && paramPtr->converter == Nsf_ConvertToBoolean && paramPtr->nrArgs == 1) {
/*fprintf(stderr, "... ad handling: proc %s param %s type %s nrargs %d default %p\n",
procName, paramPtr->name, paramPtr->type, paramPtr->nrArgs, paramPtr->defaultValue);*/
paramPtr->nrArgs = 0;
/*paramPtr->converter = Nsf_ConvertToSwitch;*/
Tcl_AppendToObj(varNameObj, "_p", 2);
if (paramPtr->defaultValue == NULL) {
paramPtr->defaultValue = Tcl_NewBooleanObj(0);
INCR_REF_COUNT(paramPtr->defaultValue);
}
}
Tcl_ListObjAppendElement(interp, argList, varNameObj);
} else {
Tcl_ListObjAppendElement(interp, argList, Tcl_NewStringObj(paramPtr->name, -1));
}
}
ov[0] = NULL;
ov[1] = procNameObj;
ov[2] = argList;
ov[3] = AddPrefixToBody(body, 1, parsedParamPtr);
/*fprintf(stderr, "NsfProcAdd define proc %s arglist '%s'\n",
ObjStr(ov[1]), ObjStr(ov[2])); */
result = Tcl_ProcObjCmd(0, interp, 4, ov);
DECR_REF_COUNT(argList);
DECR_REF_COUNT2("resultBody", ov[3]);
if (likely(result == TCL_OK)) {
/*
* The shadowed proc was created successfully. Retrieve the
* defined proc and set its namespace to the namespace of the stub
* cmd
*/
Tcl_Command procCmd = Tcl_GetCommandFromObj(interp, procNameObj);
assert(procCmd != NULL);
((Command *)procCmd)->nsPtr = (Namespace *)cmdNsPtr;
tcd->cmd = procCmd;
NsfCommandPreserve(tcd->cmd);
} else {
/*
* We could not define the shadowed proc. In this case, cleanup by
* removing the stub cmd.
*/
Tcl_DeleteCommandFromToken(interp, cmd);
}
Tcl_DStringFree(dsPtr);
return result;
}
/*
*----------------------------------------------------------------------
* ProcessMethodArguments --
*
* Process the arguments provided to a method call. It parses the argument
* vector objv, disallows certain parameter types and updates the parse
* context.
*
* Results:
* Tcl return code.
*
* Side effects:
* Updates parameter context
*
*----------------------------------------------------------------------
*/
static int
ProcessMethodArguments(ParseContext *pcPtr, Tcl_Interp *interp,
NsfObject *object, int processFlags, NsfParamDefs *paramDefs,
Tcl_Obj *methodNameObj, int objc, Tcl_Obj *CONST objv[]) {
int result;
CallFrame frame, *framePtr = &frame;
assert(pcPtr != NULL);
assert(interp != NULL);
assert(paramDefs != NULL);
assert(methodNameObj != NULL);
assert(objv != NULL);
if (object && (processFlags & NSF_ARGPARSE_METHOD_PUSH)) {
Nsf_PushFrameObj(interp, object, framePtr);
}
#if 0
{int i;
fprintf(stderr, "ProcessMethodArguments before ArgumentParse %s (flags %.6x objc %d): ", ObjStr(methodNameObj), processFlags, objc);
for(i = 0; i < objc; i++) {fprintf(stderr, " [%d]=%s,", i, ObjStr(objv[i]));}
fprintf(stderr, "\n");
}
#endif
result = ArgumentParse(interp, objc, objv, object, methodNameObj,
paramDefs->paramsPtr, paramDefs->nrParams, paramDefs->serial,
processFlags|RUNTIME_STATE(interp)->doCheckArguments,
pcPtr);
#if 0
{
int i, fromArg, toArg;
fprintf(stderr, "ProcessMethodArguments after ArgumentParse %s pcPtr->objc %d result %d\n",
ObjStr(methodNameObj), pcPtr->objc, result);
if (result == TCL_OK) {
if (processFlags & NSF_ARGPARSE_START_ZERO) {
fromArg = 0; toArg = pcPtr->objc;
} else {
fromArg = 1; toArg = pcPtr->objc;
}
for (i = fromArg; i < toArg; i++) {
fprintf(stderr, "... pcPtr %p [%d] obj %p refCount %d (%s) flags %.6x & %p\n",
pcPtr, i,
pcPtr->objv[i] ? pcPtr->objv[i] : NULL,
pcPtr->objv[i] ? pcPtr->objv[i]->refCount : -1,
pcPtr->objv[i] ? ObjStr(pcPtr->objv[i]) : "(null)", pcPtr->flags[i], &(pcPtr->flags[i]));
}
}
}
#endif
if (object && (processFlags & NSF_ARGPARSE_METHOD_PUSH)) {
Nsf_PopFrameObj(interp, framePtr);
}
/*
* Set objc of the parse context to the number of defined parameters.
* pcPtr->objc and paramDefs->nrParams will be equivalent in cases
* where argument values are passed to the call in absence of var
* args ('args'). Treating "args is more involved (see below).
*/
if (unlikely(result != TCL_OK)) {
return result;
}
if (pcPtr->varArgs == 1) {
/*
* The last argument was "args".
*/
int elts = objc - pcPtr->lastObjc;
if (elts == 0) {
/*
* No arguments were passed to "args". We simply decrement objc.
*/
pcPtr->objc--;
} else if (elts > 1) {
/*
* Multiple arguments were passed to "args". pcPtr->objv is
* pointing to the first of the var args. We have to copy the
* remaining actual argument vector objv to the parse context.
*/
/*NsfPrintObjv("actual: ", objc, objv);*/
ParseContextExtendObjv(pcPtr, paramDefs->nrParams, elts-1, objv + 1 + pcPtr->lastObjc);
} else {
/*
* A single argument was passed to "args". There is no need to
* mutate the pcPtr->objv, because this has been achieved in
* ArgumentParse (i.e., pcPtr->objv[i] contains this element).
*/
}
}
return TCL_OK;
}
/**************************************************************************
* End Definition of nsf::proc (Tcl Procs with Parameter handling)
**************************************************************************/
/*
*----------------------------------------------------------------------
* ForwardCmdDeleteProc --
*
* This Tcl_CmdDeleteProc is called, when a forward method is deleted
*
* Results:
* None.
*
* Side effects:
* Frees client data of the setter command.
*
*----------------------------------------------------------------------
*/
static void
ForwardCmdDeleteProc(ClientData clientData) {
ForwardCmdClientData *tcd;
assert(clientData != NULL);
tcd = (ForwardCmdClientData *)clientData;
if (tcd->cmdName != NULL) {DECR_REF_COUNT(tcd->cmdName);}
if (tcd->subcommands != NULL) {DECR_REF_COUNT(tcd->subcommands);}
#if defined(NSF_FORWARD_WITH_ONERROR)
if (tcd->onerror != NULL) {DECR_REF_COUNT(tcd->onerror);}
#endif
if (tcd->prefix != NULL) {DECR_REF_COUNT(tcd->prefix);}
if (tcd->args != NULL) {DECR_REF_COUNT(tcd->args);}
FREE(ForwardCmdClientData, tcd);
}
/*
*----------------------------------------------------------------------
* SetterCmdDeleteProc --
*
* This Tcl_CmdDeleteProc is called, when a setter method is deleted
*
* Results:
* None.
*
* Side effects:
* Frees client data of the setter command.
*
*----------------------------------------------------------------------
*/
static void SetterCmdDeleteProc(ClientData clientData) nonnull(1);
static void
SetterCmdDeleteProc(ClientData clientData) {
SetterCmdClientData *setterClientData;
assert(clientData != NULL);
setterClientData = (SetterCmdClientData *)clientData;
if (setterClientData->paramsPtr != NULL) {
ParamsFree(setterClientData->paramsPtr);
}
FREE(SetterCmdClientData, setterClientData);
}
/*
*----------------------------------------------------------------------
* AliasCmdDeleteProc --
*
* This Tcl_CmdDeleteProc is called, when an alias method is deleted
*
* Results:
* None.
*
* Side effects:
* Frees client data of the setter command.
*
*----------------------------------------------------------------------
*/
static void AliasCmdDeleteProc(ClientData clientData) nonnull(1);
static void
AliasCmdDeleteProc(ClientData clientData) {
AliasCmdClientData *tcd;
assert(clientData != NULL);
/*
* Since we just get the clientData, we have to obtain interp,
* object, methodName and per-object from tcd; the obj might be
* deleted already. We need as well at least still the global
* namespace.
*/
tcd = (AliasCmdClientData *)clientData;
if (tcd->interp != NULL &&
((Interp *)(tcd->interp))->globalNsPtr &&
RUNTIME_STATE(tcd->interp)->exitHandlerDestroyRound != NSF_EXITHANDLER_ON_PHYSICAL_DESTROY) {
const char *methodName = Tcl_GetCommandName(tcd->interp, tcd->aliasCmd);
AliasDelete(tcd->interp, tcd->cmdName, methodName, tcd->class == NULL);
}
/*fprintf(stderr, "AliasCmdDeleteProc aliasedCmd %p\n", tcd->aliasedCmd);*/
if (tcd->cmdName != NULL) {DECR_REF_COUNT(tcd->cmdName);}
if (tcd->aliasedCmd != NULL) {
#if defined(WITH_IMPORT_REFS)
ImportRef *refPtr, *prevPtr = NULL;
Command *aliasedCmd = (Command *)(tcd->aliasedCmd);
/*fprintf(stderr, "AliasCmdDeleteProc aliasedCmd %p epoch %d refCount %d\n",
aliasedCmd, Tcl_Command_cmdEpoch(tcd->aliasedCmd), aliasedCmd->refCount);*/
/*
* Clear the aliasCmd from the imported-ref chain of the aliased
* (or real) cmd. This widely resembles what happens in the
* DeleteImportedCmd() (see tclNamesp.c), however, as we do not
* provide for ImportedCmdData client data etc., we cannot
* directly use it.
*/
for (refPtr = aliasedCmd->importRefPtr; refPtr; refPtr = refPtr->nextPtr) {
if (refPtr->importedCmdPtr == (Command *) tcd->aliasCmd) {
if (prevPtr == NULL) {
aliasedCmd->importRefPtr = refPtr->nextPtr;
} else {
prevPtr->nextPtr = refPtr->nextPtr;
}
ckfree((char *) refPtr);
break;
}
prevPtr = refPtr;
}
#endif
NsfCommandRelease(tcd->aliasedCmd);
}
FREE(AliasCmdClientData, tcd);
}
/*
*----------------------------------------------------------------------
* GetMatchObject --
*
* Helper method used by nsfAPI.h and the info methods to check if the the
* Tcl_Obj patternObj was provided and can be looked up. If this is the
* case, wild card matching etc. does not have to be performed, but just
* the properties of the object have to be tested.
*
* Results:
* 0 or 1 or -1, potentially the matchObject (when 0 is returned)
* 0: we have wild-card characters, iterate to get matches
* 1: we have an existing object
* -1: we no wild-card characters and a non-existing object
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int
GetMatchObject(Tcl_Interp *interp, Tcl_Obj *patternObj, Tcl_Obj *origObj,
NsfObject **matchObjectPtr, const char **patternPtr) {
assert(interp != NULL);
assert(matchObjectPtr != NULL);
assert(patternPtr != NULL);
if (patternObj != NULL) {
*patternPtr = ObjStr(patternObj);
if (TclObjIsNsfObject(interp, patternObj, matchObjectPtr)) {
return 1;
}
if (patternObj == origObj && **patternPtr != ':') {
return -1;
}
}
return 0;
}
/*
*----------------------------------------------------------------------
* ForwardProcessOptions --
*
* Process the options provided by the forward method and turn these into
* the ForwardCmdClientData structure.
*
* Results:
* Tcl result code.
*
* Side effects:
* Allocated and initialized ForwardCmdClientData
*
*----------------------------------------------------------------------
*/
static int
ForwardProcessOptions(Tcl_Interp *interp, Tcl_Obj *nameObj,
Tcl_Obj *withDefault,
int withEarlybinding,
Tcl_Obj *withOnerror,
Tcl_Obj *withMethodprefix,
int withFrame,
int withVerbose,
Tcl_Obj *target, int objc, Tcl_Obj * CONST objv[],
ForwardCmdClientData **tcdPtr) {
ForwardCmdClientData *tcd;
int i, result = 0;
assert(interp != NULL);
assert(nameObj != NULL);
assert(objv != NULL);
tcd = NEW(ForwardCmdClientData);
memset(tcd, 0, sizeof(ForwardCmdClientData));
if (withDefault != 0) {
Tcl_DString ds, *dsPtr = &ds;
DSTRING_INIT(dsPtr);
Tcl_DStringAppend(dsPtr, "%1 {", 4);
Tcl_DStringAppend(dsPtr, ObjStr(withDefault), -1);
Tcl_DStringAppend(dsPtr, "}", 1);
NsfDeprecatedCmd(interp, "forward option","-default ...", Tcl_DStringValue(dsPtr));
DSTRING_FREE(dsPtr);
tcd->subcommands = withDefault;
result = Tcl_ListObjLength(interp, withDefault, &tcd->nr_subcommands);
INCR_REF_COUNT(tcd->subcommands);
}
if (withMethodprefix != 0) {
tcd->prefix = withMethodprefix;
INCR_REF_COUNT(tcd->prefix);
}
#if defined(NSF_FORWARD_WITH_ONERROR)
if (withOnerror != 0) {
tcd->onerror = withOnerror;
INCR_REF_COUNT(tcd->onerror);
}
#endif
tcd->frame = withFrame;
tcd->verbose = withVerbose;
tcd->needobjmap = 0;
tcd->cmdName = target;
/*fprintf(stderr, "...forwardprocess objc %d, cmdName %p %s\n", objc, target, ObjStr(target));*/
for (i = 0; i < objc; i++) {
const char *element = ObjStr(objv[i]);
/*fprintf(stderr, "... [%d] forwardprocess element '%s'\n", i, element);*/
tcd->needobjmap |= (*element == '%' && *(element+1) == '@');
tcd->hasNonposArgs |= (*element == '%' && *(element+1) == '-');
if (tcd->args == NULL) {
tcd->args = Tcl_NewListObj(1, &objv[i]);
tcd->nr_args++;
INCR_REF_COUNT(tcd->args);
} else {
Tcl_ListObjAppendElement(interp, tcd->args, objv[i]);
tcd->nr_args++;
}
}
if (tcd->cmdName == NULL) {
tcd->cmdName = nameObj;
}
/*fprintf(stderr, "+++ cmdName = %s, args = %s, # = %d\n",
ObjStr(tcd->cmdName), (tcd->args != NULL) ?ObjStr(tcd->args):"NULL", tcd->nr_args);*/
if (tcd->frame == FrameObjectIdx) {
/*
* When we evaluating objscope, and define ...
* o forward append -frame object append
* a call to
* o append ...
* would lead to a recursive call; so we add the appropriate namespace.
*/
const char *nameString = ObjStr(tcd->cmdName);
if (!isAbsolutePath(nameString)) {
tcd->cmdName = NameInNamespaceObj(nameString, CallingNameSpace(interp));
/*fprintf(stderr, "+++ name %s not absolute, therefore qualifying %s\n", nameString,
ObjStr(tcd->cmdName));*/
}
}
INCR_REF_COUNT(tcd->cmdName);
if (withEarlybinding != 0) {
Tcl_Command cmd = Tcl_GetCommandFromObj(interp, tcd->cmdName);
if (cmd == NULL) {
result = NsfPrintError(interp, "cannot lookup command '%s'", ObjStr(tcd->cmdName));
goto forward_process_options_exit;
}
if (CmdIsNsfObject(cmd) /* don't do direct invoke on nsf objects */
|| Tcl_Command_objProc(cmd) == TclObjInterpProc /* don't do direct invoke on tcl procs */
) {
/* silently ignore earlybinding flag */
tcd->objProc = NULL;
} else {
tcd->objProc = Tcl_Command_objProc(cmd);
tcd->clientData = Tcl_Command_objClientData(cmd);
}
}
tcd->passthrough = tcd->args == NULL && *(ObjStr(tcd->cmdName)) != '%' && tcd->objProc;
forward_process_options_exit:
/*fprintf(stderr, "forward args = %p, name = '%s'\n", tcd->args, ObjStr(tcd->cmdName));*/
if (likely(result == TCL_OK)) {
*tcdPtr = tcd;
} else {
ForwardCmdDeleteProc(tcd);
}
return result;
}
/*
*----------------------------------------------------------------------
* StripBodyPrefix --
*
* Strip the prefix of the body, which might have been added by nsf.
*
* Results:
* The string of the body without the prefix.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static const char * StripBodyPrefix(const char *body) nonnull(1);
static const char *
StripBodyPrefix(const char *body) {
assert(body != NULL);
if (strncmp(body, "::nsf::__unset_unknown_args\n", 28) == 0) {
body += 28;
}
return body;
}
/*
*----------------------------------------------------------------------
* AddSlotObjects --
*
* Compute the slot objects (children of the slot container) for a provided
* object. The objects can be filtered via a pattern.
*
* Results:
* The function appends results to the provide listObj
*
* Side effects:
* Might add as well to the hash-table to avoid duplicates.
*
*----------------------------------------------------------------------
*/
static void AddSlotObjects(Tcl_Interp *interp, NsfObject *parent, const char *prefix,
Tcl_HashTable *slotTablePtr, int withSource, NsfClass *type,
const char *pattern, Tcl_Obj *listObj)
nonnull(1) nonnull(2) nonnull(3) nonnull(8);
static void
AddSlotObjects(Tcl_Interp *interp, NsfObject *parent, const char *prefix,
Tcl_HashTable *slotTablePtr,
int withSource, NsfClass *type, const char *pattern,
Tcl_Obj *listObj) {
NsfObject *slotContainerObject;
Tcl_DString ds, *dsPtr = &ds;
int isFullQualPattern = (pattern && *pattern == ':' && *(pattern+1) == ':');
assert(interp != NULL);
assert(parent != NULL);
assert(prefix != NULL);
assert(listObj != NULL);
/*fprintf(stderr, "AddSlotObjects parent %s prefix %s type %p %s\n",
ObjectName(parent), prefix, type, (type != NULL) ? ClassName(type) : "");*/
DSTRING_INIT(dsPtr);
Tcl_DStringAppend(dsPtr, ObjectName(parent), -1);
Tcl_DStringAppend(dsPtr, prefix, -1);
slotContainerObject = GetObjectFromString(interp, Tcl_DStringValue(dsPtr));
if (slotContainerObject && slotContainerObject->nsPtr &&
(slotContainerObject->flags & NSF_IS_SLOT_CONTAINER)) {
Tcl_HashSearch hSrch;
Tcl_HashEntry *hPtr;
Tcl_HashTable *cmdTablePtr = Tcl_Namespace_cmdTablePtr(slotContainerObject->nsPtr);
Tcl_Command cmd;
hPtr = Tcl_FirstHashEntry(cmdTablePtr, &hSrch);
for (; hPtr; hPtr = Tcl_NextHashEntry(&hSrch)) {
const char *key = Tcl_GetHashKey(cmdTablePtr, hPtr);
NsfObject *childObject;
if (slotTablePtr != NULL) {
int new;
/*
* Check, if we have and entry with this key already processed. We
* never want to report shadowed entries.
*/
Tcl_CreateHashEntry(slotTablePtr, key, &new);
if (new == 0) continue;
}
/*
* Obtain the childObject
*/
cmd = (Tcl_Command) Tcl_GetHashValue(hPtr);
childObject = NsfGetObjectFromCmdPtr(cmd);
/*
* Report just the already fully initialized slot objects, not the one
* being right now created.
*/
if (childObject == NULL || (childObject->flags & NSF_INIT_CALLED) == 0) {
/* fprintf(stderr, "....... key %s unfinished\n", key);*/
continue;
}
/*
* Check the pattern.
*/
if (pattern != NULL) {
int isMatch;
/*
* If the pattern looks like fully qualified, we match against the
* fully qualified name.
*/
if (isFullQualPattern == 1) {
isMatch = Tcl_StringMatch(ObjectName(childObject), pattern);
} else {
/*
* do we have a mangled name of a private property/variable?
*/
if (*key == '_' && *(key+1) == '_' && *(key+2) == '_' && *(key+3) == '_') {
Tcl_Obj *value = Nsf_ObjGetVar2((Nsf_Object *)childObject, interp,
NsfGlobalObjs[NSF_SETTERNAME], NULL, 0);
isMatch = (value != NULL) ? Tcl_StringMatch(ObjStr(value), pattern) : 0;
/*fprintf(stderr, "pattern <%s> isFullQualPattern %d child %s key %s %p <%s> match %d\n",
pattern, isFullQualPattern, ObjectName(childObject), key,
value, (value != NULL) ? ObjStr(value) : "", match);*/
} else {
isMatch = Tcl_StringMatch(key, pattern);
}
}
if (isMatch == 0) {
continue;
}
}
/*
* Check, if the entry is from the right type
*/
if (type && !IsSubType(childObject->cl, type)) {
continue;
}
/*
* Add finally the entry to the returned list.
*/
Tcl_ListObjAppendElement(interp, listObj, childObject->cmdName);
}
}
DSTRING_FREE(dsPtr);
}
/*
*----------------------------------------------------------------------
* FindCalledClass --
*
* Find the called class of the called proc on the callstack.
*
* Results:
* NsfClass * or NULL
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static NsfClass *FindCalledClass(Tcl_Interp *interp, NsfObject *object) nonnull(1) nonnull(2);
static NsfClass *
FindCalledClass(Tcl_Interp *interp, NsfObject *object) {
NsfCallStackContent *cscPtr = CallStackGetTopFrame0(interp);
const char *methodName;
Tcl_Command cmd;
assert(interp != NULL);
assert(object != NULL);
if (cscPtr->frameType == NSF_CSC_TYPE_PLAIN) {
return cscPtr->cl;
}
if (cscPtr->frameType == NSF_CSC_TYPE_ACTIVE_FILTER) {
methodName = MethodName(cscPtr->filterStackEntry->calledProc);
} else if (cscPtr->frameType == NSF_CSC_TYPE_ACTIVE_MIXIN && object->mixinStack) {
methodName = Tcl_GetCommandName(interp, cscPtr->cmdPtr);
} else {
return NULL;
}
if (object->nsPtr != NULL) {
cmd = FindMethod(object->nsPtr, methodName);
if (cmd != NULL) {
/* we called an object specific method */
return NULL;
}
}
return SearchCMethod(object->cl, methodName, &cmd);
}
/*
* Next Primitive Handling
*/
/*
*----------------------------------------------------------------------
* NextSearchMethod --
*
* Determine the method to be called via "next". The function returns on
* success the found cmd and information like method name, was it from a mixin, filter,
* or was the end of the filter chain reached.
*
* Results:
* Tcl result code
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
NSF_INLINE static int NextSearchMethod(NsfObject *object, Tcl_Interp *interp, NsfCallStackContent *cscPtr,
NsfClass **clPtr, const char **methodNamePtr, Tcl_Command *cmdPtr,
int *isMixinEntry, int *isFilterEntry,
int *endOfFilterChain, Tcl_Command *currentCmdPtr)
nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(5) nonnull(6) nonnull(7) nonnull(8) nonnull(9) nonnull(10);
NSF_INLINE static int
NextSearchMethod(NsfObject *object, Tcl_Interp *interp, NsfCallStackContent *cscPtr,
NsfClass **clPtr, const char **methodNamePtr, Tcl_Command *cmdPtr,
int *isMixinEntry, int *isFilterEntry,
int *endOfFilterChain, Tcl_Command *currentCmdPtr) {
int endOfChain = 0, objflags;
assert(object != NULL);
assert(interp != NULL);
assert(cscPtr != NULL);
assert(clPtr != NULL);
assert(methodNamePtr != NULL);
assert(cmdPtr != NULL);
assert(isMixinEntry != NULL);
assert(isFilterEntry != NULL);
assert(endOfFilterChain != NULL);
assert(currentCmdPtr != NULL);
/*fprintf(stderr, "NextSearchMethod for %s called with cl %p\n", *methodNamePtr, *clPtr);*/
/*
* Next in filters
*/
objflags = object->flags; /* avoid stalling */
if (!(objflags & NSF_MIXIN_ORDER_VALID)) {
MixinComputeDefined(interp, object);
objflags = object->flags; /* avoid stalling */
}
if ((objflags & NSF_FILTER_ORDER_VALID) &&
object->filterStack &&
object->filterStack->currentCmdPtr) {
*cmdPtr = FilterSearchProc(interp, object, currentCmdPtr, clPtr);
/*fprintf(stderr, "FilterSearchProc returned cmd %p\n", *cmdPtr);
NsfShowStack(interp);*/
if (*cmdPtr == NULL) {
if (cscPtr->frameType == NSF_CSC_TYPE_ACTIVE_FILTER) {
/*
* Reset the information to the values of method, clPtr
* to the values they had before calling the filters.
*/
*methodNamePtr = MethodName(object->filterStack->calledProc);
endOfChain = 1;
*endOfFilterChain = 1;
*clPtr = NULL;
/*fprintf(stderr, "EndOfChain resetting cl\n");*/
}
} else {
*methodNamePtr = (char *) Tcl_GetCommandName(interp, *cmdPtr);
*endOfFilterChain = 0;
*isFilterEntry = 1;
return TCL_OK;
}
}
/*
* Next in Mixins requires that we have already a mixinStack, and the
* current frame is not a plain frame.
*/
assert(objflags & NSF_MIXIN_ORDER_VALID);
if (object->mixinStack && cscPtr->frameType) {
int result = MixinSearchProc(interp, object, *methodNamePtr, NULL,
clPtr, currentCmdPtr, cmdPtr);
/* fprintf(stderr, "next in mixins %s frameType %.6x\n", *methodNamePtr, cscPtr->frameType); */
if (unlikely(result != TCL_OK)) {
return result;
}
if (*cmdPtr == NULL) {
if (cscPtr->frameType == NSF_CSC_TYPE_ACTIVE_MIXIN) {
endOfChain = 1;
*clPtr = NULL;
}
} else {
*isMixinEntry = 1;
return TCL_OK;
}
}
/*fprintf(stderr, "nextsearch: object %s nsPtr %p endOfChain %d\n",
ObjectName(object), object->nsPtr, endOfChain);*/
/*
* Otherwise: normal method dispatch
*
* If we are already in the precedence ordering, then advance
* past our last point; otherwise (if clPtr==NULL) begin from the start.
*
* When a mixin or filter chain reached its end, we have to check for
* fully qualified method names and search the obj-specific methods as well.
*/
if (endOfChain == 1) {
if (**methodNamePtr == ':') {
*cmdPtr = Tcl_FindCommand(interp, *methodNamePtr, NULL, TCL_GLOBAL_ONLY);
/* fprintf(stderr, "NEXT found absolute cmd %s => %p\n", *methodNamePtr, *cmdPtr); */
} else if (object->nsPtr != NULL) {
*cmdPtr = FindMethod(object->nsPtr, *methodNamePtr);
if (*cmdPtr && (Tcl_Command_flags(*cmdPtr) & NSF_CMD_CALL_PRIVATE_METHOD)) {
/*fprintf(stderr, "NEXT found private cmd %s => %p\n", *methodNamePtr, *cmdPtr);*/
*cmdPtr = NULL;
}
} else {
*cmdPtr = NULL;
}
} else {
*cmdPtr = NULL;
}
/*fprintf(stderr, "NEXT methodName %s *clPtr %p %s *cmd %p cscPtr->flags %.6x\n",
*methodNamePtr, *clPtr, ClassName((*clPtr)), *cmdPtr, cscPtr->flags); */
if (!*cmdPtr) {
NsfClasses *pl = PrecedenceOrder(object->cl);
NsfClass *cl = *clPtr;
if (cl != NULL) {
/*
* Skip until actual class
*/
for ( ; pl; pl = pl->nextPtr) {
if (pl->cl == cl) {
pl = pl->nextPtr;
break;
}
}
}
if (pl != NULL) {
/*
* Search for a further class method. When we are called from an active
* filter and the call had the -local flag set, then allow to call private methods.
*/
*clPtr = SearchPLMethod(pl, *methodNamePtr, cmdPtr,
((cscPtr->flags & NSF_CM_LOCAL_METHOD) &&
cscPtr->frameType == NSF_CSC_TYPE_ACTIVE_FILTER)
? 0 : NSF_CMD_CALL_PRIVATE_METHOD);
} else {
*clPtr = NULL;
}
} else {
*clPtr = NULL;
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* NextGetArguments --
*
* Obtain arguments for a method invoked via next either from the
* argument vector or from the stack (call stack content or Tcl
* stack). In case of ensemble calls the stack entries of the
* ensemble invocation are used. The function returns the arguments
* 4 to 8.
*
* Results:
* Tcl return code
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static int NextGetArguments(Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[],
NsfCallStackContent **cscPtrPtr, const char **methodNamePtr,
int *outObjc, Tcl_Obj ***outObjv, int *freeArgumentVector)
nonnull(1) nonnull(4) nonnull(5) nonnull(6) nonnull(7) nonnull(8);
static int
NextGetArguments(Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[],
NsfCallStackContent **cscPtrPtr, const char **methodNamePtr,
int *outObjc, Tcl_Obj ***outObjv, int *freeArgumentVector) {
Tcl_Obj **nobjv;
int nobjc, oc, inEnsemble;
Tcl_CallFrame *framePtr;
NsfCallStackContent *cscPtr = CallStackGetTopFrame(interp, &framePtr);
assert(interp != NULL);
assert(cscPtrPtr != NULL);
assert(methodNamePtr != NULL);
assert(outObjc != NULL);
assert(outObjv != NULL);
assert(freeArgumentVector != NULL);
/* always make sure, we only decrement when necessary */
*freeArgumentVector = 0;
if (cscPtr == NULL) {
return NsfPrintError(interp, "next: can't find self");
}
if (cscPtr->cmdPtr == NULL) {
return NsfPrintError(interp, "next: no executing proc");
}
oc = Tcl_CallFrame_objc(framePtr);
if ((cscPtr->frameType & NSF_CSC_TYPE_ENSEMBLE)) {
/*
* We are in an ensemble method. The next works here not on the
* actual methodName + frame, but on the ensemble above it. We
* locate the appropriate call-stack content and continue next on
* that.
*/
cscPtr = CallStackFindEnsembleCsc(framePtr, &framePtr);
assert(cscPtr != NULL);
inEnsemble = 1;
*methodNamePtr = ObjStr(cscPtr->objv[0]);
} else {
inEnsemble = 0;
*methodNamePtr = Tcl_GetCommandName(interp, cscPtr->cmdPtr);
}
/*fprintf(stderr, "NextGetArguments oc %d objc %d inEnsemble %d objv %p\n",
oc, objc, inEnsemble, cscPtr->objv); */
if (objc > -1) {
int methodNameLength;
/*
* Arguments were provided. We have to construct an argument
* vector with the first argument(s) as the method name. In an
* ensemble, we have to insert the objs of the full ensemble name.
*/
if (inEnsemble != 0) {
methodNameLength = 1 + cscPtr->objc - oc;
nobjc = objc + methodNameLength;
nobjv = (Tcl_Obj **)ckalloc(sizeof(Tcl_Obj *) * nobjc);
MEM_COUNT_ALLOC("nextArgumentVector", nobjv);
/*
* copy the ensemble path name
*/
memcpy((char *)nobjv, cscPtr->objv, sizeof(Tcl_Obj *) * methodNameLength);
} else {
methodNameLength = 1;
nobjc = objc + methodNameLength;
nobjv = (Tcl_Obj **)ckalloc(sizeof(Tcl_Obj *) * nobjc);
MEM_COUNT_ALLOC("nextArgumentVector", nobjv);
/*
* copy the method name
*/
if (cscPtr->objv != NULL) {
nobjv[0] = cscPtr->objv[0];
} else if (Tcl_CallFrame_objv(framePtr)) {
nobjv[0] = Tcl_CallFrame_objv(framePtr)[0];
}
}
/*
* copy the remaining argument vector
*/
memcpy(nobjv + methodNameLength, objv == NULL ? cscPtr->objv : objv, sizeof(Tcl_Obj *) * objc);
INCR_REF_COUNT(nobjv[0]); /* we seem to need this here */
*freeArgumentVector = 1;
} else {
/*
* no arguments were provided
*/
if (cscPtr->objv != NULL) {
nobjv = (Tcl_Obj **)cscPtr->objv;
nobjc = cscPtr->objc;
} else {
nobjc = Tcl_CallFrame_objc(framePtr);
nobjv = (Tcl_Obj **)Tcl_CallFrame_objv(framePtr);
}
}
*cscPtrPtr = cscPtr;
*outObjc = nobjc;
*outObjv = nobjv;
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* NextInvokeFinalize --
*
* This finalize function is either called via NRE callback or
* directly (from NextSearchAndInvoke). It resets after a successul
* lookup and invocation the continuation context (filter flags etc)
* and cleans up optionally the argument vector (inverse operation
* of NextGetArguments).
*
* Results:
* Tcl return code
*
* Side effects:
* freeing memory
*
*----------------------------------------------------------------------
*/
NSF_INLINE static int NextInvokeFinalize(ClientData data[], Tcl_Interp *interp, int result)
nonnull(1) nonnull(2);
NSF_INLINE static int
NextInvokeFinalize(ClientData data[], Tcl_Interp *interp, int result) {
Tcl_Obj **nobjv = data[0];
NsfCallStackContent *cscPtr = data[1];
assert(data != NULL);
assert(interp != NULL);
/*fprintf(stderr, "***** NextInvokeFinalize cscPtr %p flags %.6x is next %d result %d unk %d\n",
cscPtr, cscPtr->flags, cscPtr->flags & NSF_CSC_CALL_IS_NEXT, result,
RUNTIME_STATE(interp)->unknown);*/
if (cscPtr->flags & NSF_CSC_CALL_IS_NEXT) {
/* fprintf(stderr, "..... it was a successful next\n"); */
cscPtr->flags &= ~NSF_CSC_CALL_IS_NEXT;
if (cscPtr->frameType == NSF_CSC_TYPE_INACTIVE_FILTER) {
cscPtr->frameType = NSF_CSC_TYPE_ACTIVE_FILTER;
} else if (cscPtr->frameType == NSF_CSC_TYPE_INACTIVE_MIXIN) {
cscPtr->frameType = NSF_CSC_TYPE_ACTIVE_MIXIN;
}
}
if (nobjv != NULL) {
DECR_REF_COUNT(nobjv[0]);
MEM_COUNT_FREE("nextArgumentVector", nobjv);
ckfree((char *)nobjv);
}
if (result == TCL_ERROR && RUNTIME_STATE(interp)->unknown) {
/* fprintf(stderr, "don't report unknown error\n"); */
/*
* Don't report "unknown" errors via next.
*/
result = TCL_OK;
}
return result;
}
/*
*----------------------------------------------------------------------
* NextSearchAndInvoke --
*
* The function is called with a final argument vector and searches for a
* possibly shadowed method. If a target method is found, this dispatcher
* function updates the continuation context (filter flags etc.), invokes
* upon the target method, and performs a cleanup.
*
* Results:
* Tcl return code
*
* Side effects:
* The invoked method might produce side effects. Also, the interp's unknown
* state may be modified.
*
*----------------------------------------------------------------------
*/
static int
NextSearchAndInvoke(Tcl_Interp *interp, const char *methodName,
int objc, Tcl_Obj *CONST objv[],
NsfCallStackContent *cscPtr,
int freeArgumentVector) {
Tcl_Command cmd = NULL, currentCmd = NULL;
int result, isMixinEntry = 0, isFilterEntry = 0,
endOfFilterChain = 0;
NsfRuntimeState *rst = RUNTIME_STATE(interp);
NsfObject *object;
NsfClass *cl;
assert(interp != NULL);
assert(methodName != NULL);
assert(objv != NULL);
assert(cscPtr != NULL);
/*
* Search the next method & compute its method data
*/
cl = cscPtr->cl;
object = cscPtr->self;
result = NextSearchMethod(object, interp, cscPtr, &cl, &methodName, &cmd,
&isMixinEntry, &isFilterEntry, &endOfFilterChain, ¤tCmd);
/*fprintf(stderr, "NEXT search on %s.%s cl %p cmd %p endOfFilterChain %d result %d IS OK %d\n",
ObjectName(object), methodName, cl, cmd, endOfFilterChain, result, (result == TCL_OK));*/
if (unlikely(result != TCL_OK)) {
goto next_search_and_invoke_cleanup;
}
#if 0
Tcl_ResetResult(interp); /* needed for bytecode support */
#endif
if (cmd != NULL) {
int frameType = NSF_CSC_TYPE_PLAIN;
/*
* change mixin state
*/
if (object->mixinStack != NULL) {
if (cscPtr->frameType == NSF_CSC_TYPE_ACTIVE_MIXIN) {
cscPtr->frameType = NSF_CSC_TYPE_INACTIVE_MIXIN;
}
/* otherwise move the command pointer forward */
if (isMixinEntry != 0) {
frameType = NSF_CSC_TYPE_ACTIVE_MIXIN;
object->mixinStack->currentCmdPtr = currentCmd;
}
}
/*
* change filter state
*/
if (object->filterStack != NULL) {
if (cscPtr->frameType == NSF_CSC_TYPE_ACTIVE_FILTER) {
/*fprintf(stderr, "next changes filter state\n");*/
cscPtr->frameType = NSF_CSC_TYPE_INACTIVE_FILTER;
}
/* otherwise move the command pointer forward */
if (isFilterEntry != 0) {
/*fprintf(stderr, "next moves filter forward\n");*/
frameType = NSF_CSC_TYPE_ACTIVE_FILTER;
object->filterStack->currentCmdPtr = currentCmd;
}
}
/*
* now actually call the "next" method
*/
cscPtr->flags |= NSF_CSC_CALL_IS_NEXT;
rst->unknown = 0;
#if defined(NRE)
{ unsigned int flags;
/*
* Allow call only without immediate flag, when caller has NRE without immediate
*/
flags = NsfImmediateFromCallerFlags(cscPtr->flags);
/*fprintf(stderr, "MethodDispatch in next flags %.6x NRE %d immediate %d next-flags %.6x\n",
cscPtr->flags,
(cscPtr->flags & NSF_CSC_CALL_IS_NRE) != 0,
(cscPtr->flags & NSF_CSC_IMMEDIATE) != 0,
flags);*/
if (flags == 0) {
/*
* The call is NRE-enabled. We register the callback and return
* here immediately. All other exists form this functions have
* to call NextInvokeFinalize manually on return.
*/
Tcl_NRAddCallback(interp, NextInvokeFinalize,
(freeArgumentVector != 0) ? (ClientData)objv : NULL,
cscPtr, NULL, NULL);
return MethodDispatch(object, interp, objc, objv, cmd,
object, cl, methodName, frameType, flags);
} else {
result = MethodDispatch(object, interp, objc, objv, cmd,
object, cl, methodName, frameType, flags);
}
}
#else
/*fprintf(stderr, "NextSearchAndWinvoke calls cmd %p methodName %s cscPtr->flags %.8x\n",
cmd, methodName, cscPtr->flags);*/
result = MethodDispatch(object, interp, objc, objv, cmd,
object, cl, methodName, frameType, cscPtr->flags);
#endif
} else if (likely(result == TCL_OK)) {
NsfCallStackContent *topCscPtr;
Tcl_CallFrame *varFramePtr = NULL;
int isLeafNext;
/*
* We could not find a cmd, yet the dispatch attempt did not result
* in an error. This means that we find ourselves in either of three
* situations at this point:
*
* 1) An explicit "next" cmd (NsfNextCmd()) at the end of a filter chain:
* Dispatch to unknown as there is no implementation for the requested
* call available.
*
* 2) An explicit "next" cmd from within a leaf sub-method (a "leaf
* next"): Remain silent, do not dispatch to unknown.
* 3) An implicit "next" triggered for unresolved submethods that might be
* resolved along the next path: Dispatch to unknown, the requested
* sub-cmd is not resolvable to a cmd.
*
* For the cases 1) and 3), set the interp's unknown flag signaling to
* higher levels (e.g., in MethodDispatchCsc(), in NsfNextCmd()) the need
* for dispatching to unknown.
*/
/* NsfShowStack(interp);*/
topCscPtr = CallStackGetTopFrame(interp, &varFramePtr);
assert(topCscPtr != NULL);
assert(varFramePtr != NULL);
/*
* Find the appropriate frame pointing to the start of the ensemble, in
* case we are in the middle of an ensemble.
*/
/*fprintf(stderr, "######## cscPtr %p topCscPtr %p\n", cscPtr, topCscPtr);*/
if ( cscPtr != topCscPtr
&& (cscPtr->flags & NSF_CSC_CALL_IS_ENSEMBLE) != 0
&& (topCscPtr->flags & NSF_CSC_CALL_IS_ENSEMBLE) != 0) {
for (; varFramePtr != NULL; varFramePtr = Tcl_CallFrame_callerPtr(varFramePtr)) {
topCscPtr = (NsfCallStackContent *)Tcl_CallFrame_clientData(varFramePtr);
assert(topCscPtr != NULL);
/*fprintf(stderr, "######## cscPtr %p topCscPtr %p topCscPtr->flags %8x\n",
cscPtr, topCscPtr, (topCscPtr != NULL) ? topCscPtr->flags : 0);*/
if ((topCscPtr->flags & NSF_CM_ENSEMBLE_UNKNOWN)) break;
}
if (varFramePtr != NULL) {
varFramePtr = Tcl_CallFrame_callerPtr(varFramePtr);
if (Tcl_CallFrame_isProcCallFrame(varFramePtr) & (FRAME_IS_NSF_METHOD|FRAME_IS_NSF_CMETHOD)) {
topCscPtr = (NsfCallStackContent *)Tcl_CallFrame_clientData(varFramePtr);
assert(topCscPtr != NULL);
}
}
}
/* case 2 */
isLeafNext = (cscPtr != topCscPtr) && (topCscPtr->frameType & NSF_CSC_TYPE_ENSEMBLE) &&
(topCscPtr->flags & NSF_CSC_CALL_IS_ENSEMBLE) == 0;
rst->unknown = /* case 1 */ endOfFilterChain ||
/* case 3 */ (!isLeafNext && (cscPtr->flags & NSF_CSC_CALL_IS_ENSEMBLE));
/*fprintf(stderr, "******** setting unknown to %d isLeafNext %d topCscPtr %p endOfFilterChain %d\n",
rst->unknown, isLeafNext,topCscPtr,endOfFilterChain);*/
}
next_search_and_invoke_cleanup:
/*
* We come here, whenever the NRE callback is NOT registered
*/
{ClientData data[2] = {
freeArgumentVector ? (ClientData)objv : NULL,
cscPtr
};
return NextInvokeFinalize(data, interp, result);
}
}
/*
*----------------------------------------------------------------------
* NsfNextObjCmd --
*
* nsf::xotclnext is for backwards compatibility to the next
* implementation in XOTcl. It receives an argument vector which
* is used for the invocation. if no argument vector is provided,
* the argument vector of the last invocation is used. If the
* argument vector starts with "--noArgs", then no arguments are
* passed to the shadowed method.
*
* TODO: On the longer range, this function should go into an external
* library (e.g. XOTcl compatibility library)
*
* Results:
* Tcl return code
*
* Side effects:
* The invoked method might produce side effects
*
*----------------------------------------------------------------------
*/
static int
NsfNextObjCmd(ClientData UNUSED(clientData), Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[])
nonnull(2) nonnull(4);
static int
NsfNextObjCmd(ClientData UNUSED(clientData), Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[]) {
int freeArgumentVector, result, nobjc = 0;
const char *methodName = NULL;
NsfCallStackContent *cscPtr;
Tcl_Obj **nobjv;
assert(interp != NULL);
assert(objv != NULL);
if (likely(objc < 2)) {
/* No arguments were provided */
objc = 0;
} else {
/* in case --noArgs is used, remove the flag and provide an empty argument list */
const char *arg1String = ObjStr(objv[1]);
if (*arg1String == '-' && !strcmp(arg1String, "--noArgs")) {
objc = 1;
}
}
result = NextGetArguments(interp, objc-1, &objv[1], &cscPtr, &methodName,
&nobjc, &nobjv, &freeArgumentVector);
if (likely(result == TCL_OK)) {
assert(nobjc > 0);
result = NextSearchAndInvoke(interp, methodName, nobjc, nobjv, cscPtr, freeArgumentVector);
}
return result;
}
/*
*----------------------------------------------------------------------
* FindSelfNext --
*
* This function is called via [current nextmethod] to set the result of the
* interp to the method which would be called by [next]. If there are more
* shadowed methods along the precedence path, it sets the result of the
* next method in form of a method handle. If there are no more shadowed
* procs, the result is set to empty.
*
* Results:
* Tcl return code
*
* Side effects:
* Set Tcl result.
*
*----------------------------------------------------------------------
*/
static int FindSelfNext(Tcl_Interp *interp) nonnull(1);
static int
FindSelfNext(Tcl_Interp *interp) {
NsfCallStackContent *cscPtr = CallStackGetTopFrame0(interp);
Tcl_Command cmd = NULL, currentCmd = NULL;
int result, isMixinEntry = 0,
isFilterEntry = 0,
endOfFilterChain = 0;
NsfClass *cl = cscPtr->cl;
NsfObject *object = cscPtr->self;
const char *methodName;
assert(interp != NULL);
Tcl_ResetResult(interp);
methodName = Tcl_GetCommandName(interp, cscPtr->cmdPtr);
if (methodName == NULL) {
return TCL_OK;
}
result = NextSearchMethod(object, interp, cscPtr, &cl, &methodName, &cmd,
&isMixinEntry, &isFilterEntry, &endOfFilterChain, ¤tCmd);
if (cmd != NULL) {
Tcl_SetObjResult(interp, MethodHandleObj((cl != NULL) ? (NsfObject *)cl : object,
cl == NULL, methodName));
}
return result;
}
/*
*----------------------------------------------------------------------
* ComputeLevelObj --
*
* This function comptes a fresh Tcl_Obj referring to the interp level. The
* caller has to care about freeing the returned Tcl_Obj.
*
* Results:
* Tcl_Obj *
*
* Side effects:
* Allocates a new Tcl_Obj
*
*----------------------------------------------------------------------
*/
static Tcl_Obj * ComputeLevelObj(Tcl_Interp *interp, CallStackLevel level) nonnull(1) returns_nonnull;
static Tcl_Obj *
ComputeLevelObj(Tcl_Interp *interp, CallStackLevel level) {
Tcl_CallFrame *framePtr;
Tcl_Obj *resultObj;
assert(interp != NULL);
switch (level) {
case CALLING_LEVEL: NsfCallStackFindLastInvocation(interp, 1, &framePtr); break;
case ACTIVE_LEVEL: NsfCallStackFindActiveFrame(interp, 1, &framePtr); break;
default: framePtr = NULL; /* silence compiler */
}
if (framePtr != NULL) {
/* the call was from an nsf frame, return absolute frame number */
char buffer[LONG_AS_STRING];
int l;
buffer[0] = '#';
Nsf_ltoa(buffer+1, (long)Tcl_CallFrame_level(framePtr), &l);
resultObj = Tcl_NewStringObj(buffer, l+1);
} else {
/* If not called from an nsf frame, return 1 as default */
resultObj = Tcl_NewIntObj(1);
}
return resultObj;
}
/*
int
NsfKObjCmd(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[]) {
if (objc < 2) return NsfPrintError(interp, "wrong # of args for K");
Tcl_SetObjResult(interp, objv[1]);
return TCL_OK;
}
*/
/*
* object creation & destruction
*/
/*
*----------------------------------------------------------------------
* UnsetInAllNamespaces --
*
* Try to unset a variable, searching for the variable in all
* name-spaces. This function is used by volatile to unset the automatic
* variable used for the destroy trace.
*
* Results:
* Tcl return code
*
* Side effects:
* Might unset variable
*
*----------------------------------------------------------------------
*/
static int UnsetInAllNamespaces(Tcl_Interp *interp, Tcl_Namespace *nsPtr, const char *name)
nonnull(1) nonnull(2) nonnull(3);
static int
UnsetInAllNamespaces(Tcl_Interp *interp, Tcl_Namespace *nsPtr, const char *name) {
int rc = 0;
Tcl_HashSearch search;
Tcl_HashEntry *entryPtr;
Tcl_Var *varPtr;
assert(interp != NULL);
assert(nsPtr != NULL);
assert(name != NULL);
/*fprintf(stderr, "### UnsetInAllNamespaces variable '%s', current namespace '%s'\n",
name, (nsPtr != NULL) ? nsPtr->fullName : "NULL");*/
entryPtr = Tcl_FirstHashEntry(Tcl_Namespace_childTablePtr(nsPtr), &search);
varPtr = (Tcl_Var *) Tcl_FindNamespaceVar(interp, name, nsPtr, 0);
/*fprintf(stderr, "found %s in %s -> %p\n", name, nsPtr->fullName, varPtr);*/
if (varPtr != NULL) {
Tcl_DString dFullname, *dsPtr = &dFullname;
int result;
Tcl_DStringInit(dsPtr);
Tcl_DStringAppend(dsPtr, "unset ", -1);
DStringAppendQualName(dsPtr, nsPtr, name);
/*rc = Tcl_UnsetVar2(interp, Tcl_DStringValue(dsPtr), NULL, TCL_LEAVE_ERR_MSG);*/
result = Tcl_Eval(interp, Tcl_DStringValue(dsPtr));
/* fprintf(stderr, "fqName = '%s' unset => %d %d\n", Tcl_DStringValue(dsPtr), rc, TCL_OK);*/
if (likely(result == TCL_OK)) {
rc = 1;
} else {
Tcl_Obj *resultObj = Tcl_GetObjResult(interp);
fprintf(stderr, " err = '%s'\n", ObjStr(resultObj));
}
Tcl_DStringFree(dsPtr);
}
while (rc == 0 && entryPtr) {
Tcl_Namespace *childNsPtr = (Tcl_Namespace *) Tcl_GetHashValue(entryPtr);
/*fprintf(stderr, "child = %s\n", childNsPtr->fullName);*/
entryPtr = Tcl_NextHashEntry(&search);
rc |= UnsetInAllNamespaces(interp, childNsPtr, name);
}
return rc;
}
/*
*----------------------------------------------------------------------
* FreeUnsetTraceVariable --
*
* Unset trace variable.
*
* Results:
* Tcl return code
*
* Side effects:
* Might unset variable
*
*----------------------------------------------------------------------
*/
static int FreeUnsetTraceVariable(Tcl_Interp *interp, NsfObject *object) nonnull(1) nonnull(2);
static int
FreeUnsetTraceVariable(Tcl_Interp *interp, NsfObject *object) {
assert(interp != NULL);
assert(object != NULL);
if (object->opt && object->opt->volatileVarName) {
int result = Tcl_UnsetVar2(interp, object->opt->volatileVarName, NULL, 0);
/*
* Somebody destroys a volatile object manually while the vartrace is
* still active. Destroying the object will be a problem in case the
* variable is deleted later and fires the trace. So, we unset the
* variable here which will cause a destroy via var trace, which in turn
* clears the volatileVarName flag.
*/
/* fprintf(stderr, "### FreeUnsetTraceVariable %s\n", object->opt->volatileVarName);*/
if (unlikely(result != TCL_OK)) {
int result = Tcl_UnsetVar2(interp, object->opt->volatileVarName, NULL, TCL_GLOBAL_ONLY);
if (unlikely(result != TCL_OK)) {
Tcl_Namespace *nsPtr = Tcl_GetCurrentNamespace(interp);
if (UnsetInAllNamespaces(interp, nsPtr, object->opt->volatileVarName) == 0) {
fprintf(stderr, "### don't know how to delete variable '%s' of volatile object\n",
object->opt->volatileVarName);
/*
* Return always success, since an error during destroy does not
* help at all
*/
}
}
}
/*fprintf(stderr, "### FreeUnsetTraceVariable returns %d OK %d\n", result, TCL_OK);*/
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* NsfUnsetTrace --
*
* Function to be triggered whenever the trigger variable is
* deleted. Typically this function deletes the associated object.
*
* Results:
* Result msg or null
*
* Side effects:
* Might delete associated object
*
*----------------------------------------------------------------------
*/
static const char *NsfUnsetTrace(ClientData clientData, Tcl_Interp *interp,
const char *UNUSED(name), const char *UNUSED(name2), unsigned int flags)
nonnull(1) nonnull(2);
static const char *
NsfUnsetTrace(ClientData clientData, Tcl_Interp *interp,
const char *UNUSED(name), const char *UNUSED(name2), unsigned int flags)
{
Tcl_Obj *objPtr = (Tcl_Obj *)clientData;
NsfObject *object;
const char *resultMsg = NULL;
assert(clientData != NULL);
assert(interp != NULL);
/*fprintf(stderr, "NsfUnsetTrace %s flags %.4x %.4x\n", name, flags,
flags & TCL_INTERP_DESTROYED);*/
if ((flags & TCL_INTERP_DESTROYED) == 0) {
if (GetObjectFromObj(interp, objPtr, &object) == TCL_OK) {
Tcl_Obj *savedResultObj = Tcl_GetObjResult(interp); /* save the result */
INCR_REF_COUNT(savedResultObj);
/* clear variable, destroy is called from trace */
if (object->opt && object->opt->volatileVarName) {
object->opt->volatileVarName = NULL;
}
if (DispatchDestroyMethod(interp, object, 0) != TCL_OK) {
resultMsg = "Destroy for volatile object failed";
} else {
resultMsg = "No nsf Object passed";
}
Tcl_SetObjResult(interp, savedResultObj); /* restore the result */
DECR_REF_COUNT(savedResultObj);
}
DECR_REF_COUNT(objPtr);
} else {
/*fprintf(stderr, "omitting destroy on %s %p\n", name);*/
}
return resultMsg;
}
/*
*----------------------------------------------------------------------
* CleanupDestroyObject --
*
* Perform cleanup of object; after the function is executed, the object is
* in the same fresh state as after initialization.
*
* Results:
* None.
*
* Side effects:
* Possibly freeing memory.
*
*----------------------------------------------------------------------
*/
static void CleanupDestroyObject(Tcl_Interp *interp, NsfObject *object, int softrecreate) nonnull(1) nonnull(2);
static void
CleanupDestroyObject(Tcl_Interp *interp, NsfObject *object, int softrecreate) {
assert(interp != NULL);
assert(object != NULL);
/*fprintf(stderr, "CleanupDestroyObject obj %p softrecreate %d nsPtr %p\n",
object, softrecreate, object->nsPtr);*/
/*
* The object pointer is guaranteed to point to the same object, so it is
* not sufficient for methodObj validation. Therefore, for objects
* containing per-object methods, we increment the objectMethodEpoch.
*/
if (object->nsPtr != NULL) {
NsfObjectMethodEpochIncr("CleanupDestroyObject");
}
/*
* Remove the instance, but not for ::Class/::Object
*/
if (IsBaseClass(object) == 0) {
if (softrecreate == 0) {
RemoveInstance(object, object->cl);
}
}
if (object->nsPtr != NULL) {
NSCleanupNamespace(interp, object->nsPtr);
NSDeleteChildren(interp, object->nsPtr);
}
if (object->varTablePtr != NULL) {
TclDeleteVars(((Interp *)interp), object->varTablePtr);
ckfree((char *)object->varTablePtr);
/*FREE(obj->varTablePtr, obj->varTablePtr);*/
object->varTablePtr = 0;
}
if (object->opt != NULL) {
NsfObjectOpt *opt = object->opt;
#if defined(NSF_WITH_ASSERTIONS)
if (opt->assertions != NULL) {
AssertionRemoveStore(opt->assertions);
opt->assertions = NULL;
}
#endif
#if defined(PER_OBJECT_PARAMETER_CACHING)
if (object->opt->parsedParamPtr != NULL) {
NsfParameterCacheObjectInvalidateCmd(interp, object);
}
#endif
if (softrecreate == 0) {
/*
* Remove this object from all per object mixin lists and clear the
* mixin list.
*/
if (opt->objMixins != NULL) {
RemoveFromObjectMixinsOf(object->id, opt->objMixins);
}
CmdListFree(&opt->objMixins, GuardDel);
CmdListFree(&opt->objFilters, GuardDel);
FREE(NsfObjectOpt, opt);
object->opt = NULL;
}
}
object->flags &= ~NSF_MIXIN_ORDER_VALID;
if (object->mixinOrder != NULL) MixinResetOrder(object);
object->flags &= ~NSF_FILTER_ORDER_VALID;
if (object->filterOrder != NULL) FilterResetOrder(object);
}
/*
* obj initialization & namespace creation
*/
/*
*----------------------------------------------------------------------
* CleanupInitObject --
*
* Perform the initialization of an object in a virgin state.
* During bootstrap, cl might be NULL.
*
* Results:
* None.
*
* Side effects:
* Updateing the object structure
*
*----------------------------------------------------------------------
*/
static void CleanupInitObject(Tcl_Interp *interp, NsfObject *object,
NsfClass *cl, Tcl_Namespace *nsPtr, int softrecreate)
nonnull(1) nonnull(2);
static void
CleanupInitObject(Tcl_Interp *interp, NsfObject *object,
NsfClass *cl, Tcl_Namespace *nsPtr, int softrecreate) {
assert(interp != NULL);
assert(object != NULL);
#ifdef OBJDELETION_TRACE
fprintf(stderr, "+++ CleanupInitObject\n");
#endif
object->teardown = interp;
object->nsPtr = nsPtr;
if (!softrecreate && cl != NULL) {
AddInstance(object, cl);
}
if (object->flags & NSF_RECREATE) {
object->opt = NULL;
object->varTablePtr = NULL;
object->mixinOrder = NULL;
object->filterOrder = NULL;
object->flags = 0;
}
/*
fprintf(stderr, "cleanupInitObject %s: %p cl = %p\n", (obj->cmdName != NULL) ? ObjectName(object) : "", object, object->cl);*/
}
/*
*----------------------------------------------------------------------
* PrimitiveDestroy --
*
* Dispatch either PrimitiveCDestroy or PrimitiveODestroy
* depending on whether the object is a class
*
* Results:
* None.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static void
PrimitiveDestroy(ClientData clientData) {
assert(clientData != NULL);
if (NsfObjectIsClass((NsfObject *)clientData)) {
PrimitiveCDestroy(clientData);
} else {
PrimitiveODestroy(clientData);
}
}
/*
*----------------------------------------------------------------------
* TclDeletesObject --
*
* Function to be called, when Tcl deletes the command which has an
* object/class associated. This happens, when e.g. a namespace is deleted.
*
* Results:
* None.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static void TclDeletesObject(ClientData clientData) nonnull(1);
static void
TclDeletesObject(ClientData clientData) {
NsfObject *object;
Tcl_Interp *interp;
assert(clientData != NULL);
object = (NsfObject *)clientData;
/*
* TODO: Actually, it seems like a good idea to flag a deletion from Tcl by
* setting object->id to NULL. However, we seem to have some dependencies
* avoiding this currently, so we use the flag.
*/
object->flags |= NSF_TCL_DELETE;
/*fprintf(stderr, "cmd dealloc %p TclDeletesObject (%d)\n",
object->id, Tcl_Command_refCount(object->id));*/
#ifdef OBJDELETION_TRACE
fprintf(stderr, "TclDeletesObject %p obj->id %p flags %.6x\n", object, object->id, object->flags);
#endif
if ((object->flags & NSF_DURING_DELETE) || !object->teardown) return;
interp = object->teardown;
# ifdef OBJDELETION_TRACE
fprintf(stderr, "... %p %s\n", object, ObjectName(object));
# endif
CallStackDestroyObject(interp, object);
}
/*
*----------------------------------------------------------------------
* PrimitiveODestroy --
*
* Delete an object with its namespace and associated data structures
* (mixin stack, filter stack). The physical deallocation is handled by
* NsfCleanupObject() which performs reference counting.
*
* Results:
* None.
*
* Side effects:
* Free obejct contents.
*
*----------------------------------------------------------------------
*/
static void
PrimitiveODestroy(ClientData clientData) {
NsfObject *object;
Tcl_Interp *interp;
assert(clientData != NULL);
object = (NsfObject *)clientData;
assert(object->teardown);
/*fprintf(stderr, "****** PrimitiveODestroy %p cmd %p flags %.6x\n",
object, object->id, object->flags);*/
/*
* We assume, the object was not yet deleted, but destroy was called
* already.
*/
assert(!(object->flags & NSF_DELETED));
assert(object->flags & NSF_DESTROY_CALLED);
/*
* Check and latch against recurrent calls with object->teardown.
*/
PRINTOBJ("PrimitiveODestroy", object);
interp = object->teardown;
/*
* Don't destroy, if the interpreter is destroyed already
* e.g. TK calls Tcl_DeleteInterp directly, if the window is killed
*/
if (Tcl_InterpDeleted(interp)) return;
#ifdef OBJDELETION_TRACE
{Command *cmdPtr = object->id;
fprintf(stderr, " physical delete of %p id=%p (cmd->refCount %d) destroyCalled=%d '%s'\n",
object, object->id, cmdPtr->refCount, (object->flags & NSF_DESTROY_CALLED), ObjectName(object));
}
#endif
CleanupDestroyObject(interp, object, 0);
while (object->mixinStack) {
MixinStackPop(object);
}
while (object->filterStack) {
FilterStackPop(object);
}
/*
* Object is now mostly dead, but still allocated. However, since
* Nsf_DeleteNamespace might delegate to the parent (e.g. slots) we clear
* teardown after the deletion of the children.
*/
if (object->nsPtr != NULL) {
/*fprintf(stderr, "PrimitiveODestroy calls deleteNamespace for object %p nsPtr %p\n", object, object->nsPtr);*/
Nsf_DeleteNamespace(interp, object->nsPtr);
object->nsPtr = NULL;
}
object->teardown = NULL;
/*fprintf(stderr, " +++ OBJ/CLS free: %p %s\n", object, ObjectName(object));*/
object->flags |= NSF_DELETED;
ObjTrace("ODestroy", object);
DECR_REF_COUNT(object->cmdName);
NsfCleanupObject(object, "PrimitiveODestroy");
}
/*
*----------------------------------------------------------------------
* DoDealloc --
*
* Perform deallocation of an object/class. This function is called
* from the dealloc method and internally to get rid of an
* abject. It cares about volatile and frees/triggers free
* operation depending on the stack references.
*
* Results:
* Tcl return code
*
* Side effects:
* freed object or object is marked to be freed.
*
*----------------------------------------------------------------------
*/
static int DoDealloc(Tcl_Interp *interp, NsfObject *object) nonnull(1) nonnull(2);
static int
DoDealloc(Tcl_Interp *interp, NsfObject *object) {
int result;
assert(interp != NULL);
assert(object != NULL);
/*fprintf(stderr, "DoDealloc obj= %s %p flags %.6x activation %d cmd %p opt=%p\n",
ObjectName(object), object, object->flags, object->activationCount,
object->id, object->opt);*/
result = FreeUnsetTraceVariable(interp, object);
if (unlikely(result != TCL_OK)) {
return result;
}
/*
* Latch, and call delete command if not already in progress.
*/
if (RUNTIME_STATE(interp)->exitHandlerDestroyRound !=
NSF_EXITHANDLER_ON_SOFT_DESTROY) {
CallStackDestroyObject(interp, object);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* MarkUndestroyed --
*
* Mark an object as if destroy was not called. This function is e.g. used
* from recreate.
*
* Results:
* None
*
* Side effects:
* Setting object flag.
*
*----------------------------------------------------------------------
*/
static void MarkUndestroyed(NsfObject *object) nonnull(1);
static void
MarkUndestroyed(NsfObject *object) {
assert(object != NULL);
object->flags &= ~NSF_DESTROY_CALLED;
}
/*
*----------------------------------------------------------------------
* PrimitiveOInit --
*
* Set/reset the object to a fresh, un-destroyed state
*
* Results:
* Tcl return code
*
* Side effects:
* initializing object structure
*
*----------------------------------------------------------------------
*/
static void PrimitiveOInit(NsfObject *object, Tcl_Interp *interp, const char *name,
Tcl_Namespace *nsPtr, NsfClass *cl)
nonnull(1) nonnull(2) nonnull(3);
static void
PrimitiveOInit(NsfObject *object, Tcl_Interp *interp, const char *name,
Tcl_Namespace *nsPtr, NsfClass *cl) {
assert(object != NULL);
assert(interp != NULL);
assert(name != NULL);
#ifdef OBJDELETION_TRACE
fprintf(stderr, "+++ PrimitiveOInit\n");
#endif
#ifdef NSFOBJ_TRACE
fprintf(stderr, "OINIT %s = %p\n", name, object);
#endif
NsfObjectRefCountIncr(object);
MarkUndestroyed(object);
/*
* There might be already a namespace with name name; if this is the
* case, use this namespace as object namespace. The preexisting
* namespace might contain Next Scripting objects. If we would not use the
* namespace as child namespace, we would not recognize the objects
* as child objects, deletions of the object might lead to a crash.
*
* We can use here the provided nsPtr, except in cases, where this
* namespaces is being destroyed (e.g. recreate a new object from a
* different object system).
*/
if (nsPtr && (((Namespace *)nsPtr)->flags & NS_DYING)) {
Namespace *dummy1Ptr, *dummy2Ptr, *nsPtr1 = (Namespace *)nsPtr;
const char *dummy;
TclGetNamespaceForQualName(interp, name,
NULL, TCL_GLOBAL_ONLY|TCL_FIND_ONLY_NS,
&nsPtr1, &dummy1Ptr, &dummy2Ptr, &dummy);
nsPtr = (Tcl_Namespace *)nsPtr1;
/*fprintf(stderr, "PrimitiveOInit %p calls TclGetNamespaceForQualName with %s => %p given %p object->nsPtr %p\n",
object, name,
nsPtr, nsPtr, object->nsPtr);*/
}
if (nsPtr != NULL) {
NsfNamespaceInit(nsPtr);
}
/* fprintf(stderr, "PrimitiveOInit %p %s, ns %p\n", object, name, nsPtr); */
CleanupInitObject(interp, object, cl, nsPtr, 0);
/* TODO: would be nice, if we could init object flags */
/* object->flags = NSF_MIXIN_ORDER_VALID | NSF_FILTER_ORDER_VALID;*/
object->mixinStack = NULL;
object->filterStack = NULL;
}
/*
*----------------------------------------------------------------------
* PrimitiveOCreate --
*
* Allocate memory for an object, create the object name and the associated
* Tcl command and call the initialization functions.
*
* Results:
* NsfObject*
*
* Side effects:
* Allocating memory
*
*----------------------------------------------------------------------
*/
static NsfObject * PrimitiveOCreate(Tcl_Interp *interp, Tcl_Obj *nameObj, Tcl_Namespace *parentNsPtr, NsfClass *cl)
nonnull(1) nonnull(2) nonnull(4) returns_nonnull;
static NsfObject *
PrimitiveOCreate(Tcl_Interp *interp, Tcl_Obj *nameObj, Tcl_Namespace *parentNsPtr, NsfClass *cl) {
const char *nameString;
Tcl_Namespace *nsPtr;
NsfObject *object;
assert(interp != NULL);
assert(nameObj != NULL);
assert(cl != NULL);
object = (NsfObject *)ckalloc(sizeof(NsfObject));
MEM_COUNT_ALLOC("NsfObject/NsfClass", object);
assert(object != NULL); /* ckalloc panics, if malloc fails */
memset(object, 0, sizeof(NsfObject));
nameString = ObjStr(nameObj);
assert(isAbsolutePath(nameString));
#if defined(NSFOBJ_TRACE)
fprintf(stderr, "CKALLOC Object %p %s\n", object, nameString);
#endif
#ifdef OBJDELETION_TRACE
fprintf(stderr, "+++ PrimitiveOCreate\n");
#endif
nsPtr = NSCheckNamespace(interp, nameString, parentNsPtr);
if (nsPtr != NULL) {
NSNamespacePreserve(nsPtr);
}
#if defined(NRE)
object->id = Tcl_NRCreateCommand(interp, nameString,
NsfObjDispatch,
NsfObjDispatchNRE,
object, TclDeletesObject);
#else
object->id = Tcl_CreateObjCommand(interp, nameString, NsfObjDispatch,
object, TclDeletesObject);
#endif
/*fprintf(stderr, "cmd alloc %p %d (%s)\n", object->id,
Tcl_Command_refCount(object->id), nameString);*/
PrimitiveOInit(object, interp, nameString, nsPtr, cl);
if (nsPtr != NULL) {
NSNamespaceRelease(nsPtr);
}
object->cmdName = nameObj;
INCR_REF_COUNT(object->cmdName);
ObjTrace("PrimitiveOCreate", object);
return object;
}
/*
*----------------------------------------------------------------------
* DefaultSuperClass --
*
* Determine the default Superclass of the class (specified as
* second argument) and meta class (third argument). The function
* searches for the variable NSF_DEFAULTMETACLASS or
* NSF_DEFAULTSUPERCLASS and uses it if present.
*
* Results:
* Default superclass or NULL
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static NsfClass *
DefaultSuperClass(Tcl_Interp *interp, NsfClass *cl, NsfClass *mCl, int isMeta) {
NsfClass *resultClass = NULL;
Tcl_Obj *resultObj;
assert(interp != NULL);
assert(cl != NULL);
assert(mCl != NULL);
/*fprintf(stderr, "DefaultSuperClass cl %s, mcl %s, isMeta %d\n",
ClassName(cl), ClassName(mCl), isMeta );*/
resultObj = Nsf_ObjGetVar2((Nsf_Object *)mCl, interp, (isMeta != 0) ?
NsfGlobalObjs[NSF_DEFAULTMETACLASS] :
NsfGlobalObjs[NSF_DEFAULTSUPERCLASS], NULL, 0);
if (resultObj != NULL) {
if (unlikely(GetClassFromObj(interp, resultObj, &resultClass, 0) != TCL_OK)) {
NsfPrintError(interp, "default superclass is not a class");
}
/*fprintf(stderr, "DefaultSuperClass for %s got from var %s => %s\n",
ClassName(cl),
ObjStr((isMeta != 0) ? NsfGlobalObjs[NSF_DEFAULTMETACLASS] : NsfGlobalObjs[NSF_DEFAULTSUPERCLASS]),
ClassName(resultClass));*/
} else {
NsfClasses *sc;
/*fprintf(stderr, "DefaultSuperClass for %s: search in superClasses starting with %p meta %d\n",
ClassName(cl), cl->super, isMeta);*/
if (isMeta != 0) {
/*
* Is this already the root metaclass ?
*/
if (IsRootMetaClass(mCl->object.cl)) {
return mCl->object.cl;
}
}
/*
* check superClasses of metaclass
*/
for (sc = mCl->super; sc && sc->cl != cl; sc = sc->nextPtr) {
/* fprintf(stderr, " ... check ismeta %d %s root mcl %d root cl %d\n",
isMeta, ClassName(sc->cl),
sc->cl->object.flags & NSF_IS_ROOT_META_CLASS,
sc->cl->object.flags & NSF_IS_ROOT_CLASS); */
if (isMeta != 0) {
if (IsRootMetaClass(sc->cl)) {
return sc->cl;
}
} else {
if (IsRootClass(sc->cl)) {
/* fprintf(stderr, "found root class %p %s\n", sc->cl, ClassName(sc->cl)); */
return sc->cl;
}
}
resultClass = DefaultSuperClass(interp, cl, sc->cl, isMeta);
if (resultClass != NULL) {
break;
}
}
}
return resultClass;
}
/*
*----------------------------------------------------------------------
* CleanupDestroyClass --
*
* Cleanup class in a destroy call. Remove filters, mixins, assertions,
* instances and remove finally class from class hierarchy. In the recreate
* case, it preserves the pointers from other class structures.
*
* Results:
* None.
*
* Side effects:
* Updated class structures.
*
*----------------------------------------------------------------------
*/
static void CleanupDestroyClass(Tcl_Interp *interp, NsfClass *cl, int softrecreate, int recreate)
nonnull(1) nonnull(2);
static void
CleanupDestroyClass(Tcl_Interp *interp, NsfClass *cl, int softrecreate, int recreate) {
NsfClassOpt *clopt;
NsfClass *baseClass = NULL;
NsfClasses *subClasses;
assert(interp != NULL);
assert(cl != NULL);
PRINTOBJ("CleanupDestroyClass", (NsfObject *)cl);
assert((softrecreate != 0) ? recreate == 1 : 1);
clopt = cl->opt;
/*fprintf(stderr, "CleanupDestroyClass %p %s (ismeta=%d) softrecreate=%d, recreate=%d, %p\n",
cl, ClassName(cl), IsMetaClass(interp, cl, 1),
softrecreate, recreate, clopt);*/
subClasses = DependentSubClasses(cl);
if (subClasses != NULL) {
/*
* Perform the next steps even with clopt == NULL, since the class
* might be used as a superclass of a per object mixin, so it might
* have no clopt...
*/
MixinInvalidateObjOrders(interp, cl, subClasses);
if (FiltersDefined(interp) > 0) {
FilterInvalidateObjOrders(interp, subClasses);
}
}
if (clopt != NULL) {
/*
* Remove this class from all isClassMixinOf lists and clear the
* class mixin list
*/
if (clopt->classMixins != NULL) {
RemoveFromClassMixinsOf(clopt->id, clopt->classMixins);
}
CmdListFree(&clopt->classMixins, GuardDel);
CmdListFree(&clopt->classFilters, GuardDel);
if (clopt->mixinRegObjs != NULL) {
NsfMixinregInvalidate(interp, clopt->mixinRegObjs);
DECR_REF_COUNT2("mixinRegObjs", clopt->mixinRegObjs);
clopt->mixinRegObjs = NULL;
}
if (recreate == 0) {
/*
* Remove this class from all mixin lists and clear the isObjectMixinOf list
*/
if (clopt->isObjectMixinOf != 0) RemoveFromObjectMixins(clopt->id, clopt->isObjectMixinOf);
CmdListFree(&clopt->isObjectMixinOf, GuardDel);
/*
* Remove this class from all class mixin lists and clear the
* isClassMixinOf list
*/
if (clopt->isClassMixinOf != 0) RemoveFromClassmixins(clopt->id, clopt->isClassMixinOf);
CmdListFree(&clopt->isClassMixinOf, GuardDel);
}
/*
* Remove dependent filters of this class from all subclasses
*/
FilterRemoveDependentFilterCmds(cl, subClasses);
#if defined(NSF_WITH_ASSERTIONS)
if (clopt->assertions != NULL) {
AssertionRemoveStore(clopt->assertions);
clopt->assertions = NULL;
}
#endif
#ifdef NSF_OBJECTDATA
NsfFreeObjectData(cl);
#endif
}
NSCleanupNamespace(interp, cl->nsPtr);
NSDeleteChildren(interp, cl->nsPtr);
if (softrecreate == 0) {
/*
* Reclass all instances of the current class to the appropriate
* most general class ("baseClass"). The most general class of a
* metaclass is the root meta class, the most general class of an
* object is the root class. Instances of meta-classes can be only
* reset to the root meta class (and not to to the root base
* class).
*/
baseClass = DefaultSuperClass(interp, cl, cl->object.cl,
IsMetaClass(interp, cl, 1));
/*
* We do not have to reclassing in case, cl is a root class
*/
if (IsRootClass(cl) == 0) {
Tcl_HashTable *instanceTablePtr = &cl->instances;
Tcl_HashSearch hSrch;
Tcl_HashEntry *hPtr;
for (hPtr = Tcl_FirstHashEntry(instanceTablePtr, &hSrch); hPtr;
hPtr = Tcl_NextHashEntry(&hSrch)) {
NsfObject *inst = (NsfObject *)Tcl_GetHashKey(instanceTablePtr, hPtr);
/*fprintf(stderr, " inst %p %s flags %.6x id %p baseClass %p %s\n",
inst, ObjectName(inst), inst->flags, inst->id, baseClass, ClassName(baseClass));*/
if (inst && inst != (NsfObject *)cl && !(inst->flags & NSF_DURING_DELETE) /*inst->id*/) {
if (inst != &(baseClass->object)) {
AddInstance(inst, baseClass);
}
}
}
}
Tcl_DeleteHashTable(&cl->instances);
MEM_COUNT_FREE("Tcl_InitHashTable", &cl->instances);
}
if (clopt != NULL && recreate == 0) {
FREE(NsfClassOpt, clopt);
cl->opt = NULL;
}
if (subClasses != NULL) {
/*
* On a recreate, it might be possible that the newly created class
* has a different superclass. So we have to flush the precedence
* list on a recreate as well.
*/
FlushPrecedences(subClasses);
NsfClassListFree(subClasses);
}
while (cl->super) {
(void)RemoveSuper(cl, cl->super->cl);
}
if (softrecreate == 0) {
/*
* flush all caches, unlink superClasses
*/
while (cl->sub) {
NsfClass *subClass = cl->sub->cl;
(void)RemoveSuper(subClass, cl);
/*
* If there are no more super classes add the Object
* class as superClasses
* -> don't do that for Object itself!
*/
if (subClass->super == 0 && IsRootClass(cl) == 0) {
/* fprintf(stderr,"subClass %p %s baseClass %p %s\n",
cl, ClassName(cl), baseClass, ClassName(baseClass)); */
AddSuper(subClass, baseClass);
}
}
/*(void)RemoveSuper(cl, cl->super->cl);*/
}
}
/*
*----------------------------------------------------------------------
* CleanupInitClass --
*
* Basic initialization of a class, setting namespace, super- and
* sub-classes, and setup optionally instances table.
*
* Results:
* None.
*
* Side effects:
* Makes a class structure useable.
*
*----------------------------------------------------------------------
*/
static void CleanupInitClass(Tcl_Interp *interp, NsfClass *cl, Tcl_Namespace *nsPtr,
int softrecreate, int recreate) nonnull(1) nonnull(2) nonnull(3);
static void
CleanupInitClass(Tcl_Interp *interp, NsfClass *cl, Tcl_Namespace *nsPtr,
int softrecreate, int recreate) {
NsfClass *defaultSuperclass;
assert(interp != NULL);
assert(cl != NULL);
assert(nsPtr != NULL);
assert((softrecreate != 0) ? recreate == 1 : 1);
#ifdef OBJDELETION_TRACE
fprintf(stderr, "+++ CleanupInitClass\n");
#endif
/*
* Record, that cl is a class and set its namespace
*/
NsfObjectSetClass((NsfObject *)cl);
cl->nsPtr = nsPtr;
if (softrecreate == 0) {
/*
* Subclasses are preserved during recreate, superClasses not (since the
* creation statement defined the superclass, might be different the
* second time)
*/
cl->sub = NULL;
}
cl->super = NULL;
/*
* We can can the default superclass from the metaclass, if this exists.
*/
if (cl->object.cl != NULL) {
/* Look for a configured default superclass */
defaultSuperclass = DefaultSuperClass(interp, cl, cl->object.cl, 0);
} else {
defaultSuperclass = NULL;
}
if (cl != defaultSuperclass) {
AddSuper(cl, defaultSuperclass);
}
cl->color = WHITE;
cl->order = NULL;
if (softrecreate == 0) {
Tcl_InitHashTable(&cl->instances, TCL_ONE_WORD_KEYS);
MEM_COUNT_ALLOC("Tcl_InitHashTable", &cl->instances);
}
if (recreate == 0) {
cl->opt = NULL;
}
}
/*
*----------------------------------------------------------------------
* PrimitiveCDestroy --
*
* Delete a class with its namespace and associated data structures. The
* physical deallocation is handled by PrimitiveODestroy()
*
* Results:
* None.
*
* Side effects:
* Free obejct contents.
*
*----------------------------------------------------------------------
*/
static void
PrimitiveCDestroy(ClientData clientData) {
NsfClass *cl;
NsfObject *object;
Tcl_Interp *interp;
Tcl_Namespace *saved;
assert(clientData != NULL);
cl = (NsfClass *)clientData;
object = (NsfObject *)clientData;
PRINTOBJ("PrimitiveCDestroy", object);
/*
* check and latch against recurrent calls with obj->teardown
*/
if (object == NULL || object->teardown == NULL) return;
interp = object->teardown;
/*
* Don't destroy, if the interpreted is destroyed already
* e.g. TK calls Tcl_DeleteInterp directly, if Window is killed
*/
if (Tcl_InterpDeleted(interp)) return;
/*
* call and latch user destroy with object->id if we haven't
*/
/*fprintf(stderr, "PrimitiveCDestroy %s flags %.6x\n", ObjectName(object), object->flags);*/
object->teardown = NULL;
CleanupDestroyClass(interp, cl, 0, 0);
/*
* handoff the primitive teardown
*/
saved = cl->nsPtr;
object->teardown = interp;
/*
* class object destroy + physical destroy
*/
PrimitiveODestroy(clientData);
/*fprintf(stderr, "primitive cdestroy calls delete namespace for obj %p, nsPtr %p flags %.6x\n",
cl, saved, ((Namespace *)saved)->flags);*/
Nsf_DeleteNamespace(interp, saved);
/*fprintf(stderr, "primitive cdestroy %p DONE\n", cl);*/
return;
}
/*
*----------------------------------------------------------------------
* PrimitiveCInit --
*
* Set/reset a class to a fresh, un-destroyed state
*
* Results:
* Tcl return code
*
* Side effects:
* initializing object structure
*
*----------------------------------------------------------------------
*/
static void PrimitiveCInit(NsfClass *cl, Tcl_Interp *interp, const char *name) nonnull(1) nonnull(2) nonnull(3);
static void
PrimitiveCInit(NsfClass *cl, Tcl_Interp *interp, const char *name) {
Tcl_CallFrame frame, *framePtr = &frame;
Tcl_Namespace *nsPtr;
assert(cl != NULL);
assert(interp != NULL);
assert(name != NULL);
/*
* Ensure that namespace is newly created during CleanupInitClass. Kill it,
* if it exists already
*/
if (Tcl_PushCallFrame(interp, (Tcl_CallFrame *)framePtr,
RUNTIME_STATE(interp)->NsfClassesNS, 0) != TCL_OK) {
return;
}
nsPtr = NSGetFreshNamespace(interp, &cl->object, name);
Tcl_PopCallFrame(interp);
CleanupInitClass(interp, cl, nsPtr, 0, 0);
return;
}
/*
*----------------------------------------------------------------------
* PrimitiveCCreate --
*
* Allocate memory for a class, initialize the class specific data
* structure (eg. class namespace) and call PrimitiveOCreate() for the
* object specific initialization.
*
* Results:
* NsfClass*
*
* Side effects:
* Allocating memory
*
*----------------------------------------------------------------------
*/
static NsfClass *PrimitiveCCreate(Tcl_Interp *interp, Tcl_Obj *nameObj,
Tcl_Namespace *parentNsPtr, NsfClass *metaClass)
nonnull(1) nonnull(2) returns_nonnull;
static NsfClass *
PrimitiveCCreate(Tcl_Interp *interp, Tcl_Obj *nameObj, Tcl_Namespace *parentNsPtr, NsfClass *metaClass) {
Tcl_Namespace *nsPtr;
const char *nameString;
NsfObject *object;
NsfClass *cl;
assert(interp != NULL);
assert(nameObj != NULL);
cl = (NsfClass *)ckalloc(sizeof(NsfClass));
nameString = ObjStr(nameObj);
object = (NsfObject *)cl;
#if defined(NSFOBJ_TRACE)
fprintf(stderr, "CKALLOC Class %p %s\n", cl, nameString);
#endif
memset(cl, 0, sizeof(NsfClass));
MEM_COUNT_ALLOC("NsfObject/NsfClass", cl);
/* pass object system from meta class */
if (metaClass != NULL) {
cl->osPtr = metaClass->osPtr;
}
assert(isAbsolutePath(nameString));
/*
fprintf(stderr, "Class alloc %p '%s'\n", cl, nameString);
*/
nsPtr = NSCheckNamespace(interp, nameString, parentNsPtr);
if (nsPtr != NULL) {
NSNamespacePreserve(nsPtr);
}
#if defined(NRE)
object->id = Tcl_NRCreateCommand(interp, nameString,
NsfObjDispatch,
NsfObjDispatchNRE,
cl, TclDeletesObject);
#else
object->id = Tcl_CreateObjCommand(interp, nameString, NsfObjDispatch,
cl, TclDeletesObject);
#endif
PrimitiveOInit(object, interp, nameString, nsPtr, metaClass);
if (nsPtr != NULL) {
NSNamespaceRelease(nsPtr);
}
object->cmdName = nameObj;
/* convert cmdName to Tcl Obj of type cmdName */
/* Tcl_GetCommandFromObj(interp, obj->cmdName);*/
INCR_REF_COUNT(object->cmdName);
PrimitiveCInit(cl, interp, nameString+2);
ObjTrace("PrimitiveCCreate", object);
return cl;
}
/*
*----------------------------------------------------------------------
* ChangeClass --
*
* Change class of a Next Scripting object. This function takes
* care that one tries not to change an object into a class or vice
* versa. Changing meta-class to meta-class, or class to class, or
* object to object is fine, but upgrading/downgrading is not
* allowed
*
* Results:
* Tcl return code
*
* Side effects:
* changes class of object if possible and updates instance relation.
*
*----------------------------------------------------------------------
*/
NSF_INLINE static int ChangeClass(Tcl_Interp *interp, NsfObject *object, NsfClass *cl)
nonnull(1) nonnull(2) nonnull(3);
NSF_INLINE static int
ChangeClass(Tcl_Interp *interp, NsfObject *object, NsfClass *cl) {
assert(interp != NULL);
assert(object != NULL);
assert(cl != NULL);
NsfInstanceMethodEpochIncr("ChangeClass");
/*fprintf(stderr, "changing %s to class %s ismeta %d\n",
ObjectName(object), ClassName(cl),
IsMetaClass(interp, cl, 1));*/
if (cl != object->cl) {
if (IsMetaClass(interp, cl, 1)) {
/* Do not allow upgrading from a class to a meta-class (in
other words, don't make an object to a class). To allow
this, it would be necessary to reallocate the base
structures.
*/
if (!IsMetaClass(interp, object->cl, 1)) {
return NsfPrintError(interp, "cannot turn object into a class");
}
} else {
/* The target class is not a meta class. */
/*fprintf(stderr, "target class %s not a meta class, am i a class %d\n",
ClassName(cl), NsfObjectIsClass(object) );*/
if (NsfObjectIsClass(object)) {
return NsfPrintError(interp, "cannot turn class into an object ");
}
}
RemoveInstance(object, object->cl);
AddInstance(object, cl);
MixinComputeDefined(interp, object);
FilterComputeDefined(interp, object);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* DoObjInitialization --
*
* Perform the object initialization: first call "configure" and the
* constructor "init", if not called already from configure. The function
* will make sure that the called methods do not change the result passed
* into this function.
*
* Results:
* Tcl return code
*
* Side effects:
* Indirect effects by calling Tcl code
*
*----------------------------------------------------------------------
*/
static int DoObjInitialization(Tcl_Interp *interp, NsfObject *object, int objc, Tcl_Obj *CONST objv[])
nonnull(1) nonnull(2) nonnull(4);
static int
DoObjInitialization(Tcl_Interp *interp, NsfObject *object, int objc, Tcl_Obj *CONST objv[]) {
Tcl_Obj *methodObj, *savedObjResult;
int result;
assert(interp != NULL);
assert(object != NULL);
assert(objv != NULL);
assert(objc >= 0);
#if 0
{ int i;
fprintf(stderr, "DoObjInitialization objc %d: ",objc);
for(i = 0; i < objc; i++) {fprintf(stderr, " [%d]=%s,", i, ObjStr(objv[i]));}
fprintf(stderr, "\n");
}
#endif
/*
* Save the result we have so far to return it in case of success
*/
savedObjResult = Tcl_GetObjResult(interp);
INCR_REF_COUNT(savedObjResult);
/*
* clear INIT_CALLED flag
*/
object->flags &= ~NSF_INIT_CALLED;
/*
* Make sure, the object survives initialization; the cmd/initcmd might
* destroy it.
*/
NsfObjectRefCountIncr(object);
/*
* Call configure method
*/
if (CallDirectly(interp, object, NSF_o_configure_idx, &methodObj)) {
NSF_PROFILE_TIME_DATA;
if (methodObj == NULL) {
methodObj = NsfGlobalObjs[NSF_CONFIGURE];
}
assert(methodObj != NULL);
/* methodObj is just for error reporting */
NSF_PROFILE_CALL(interp, object, ObjStr(methodObj));
result = NsfOConfigureMethod(interp, object, objc, objv, methodObj);
NSF_PROFILE_EXIT(interp, object, ObjStr(methodObj));
} else {
result = CallMethod(object, interp, methodObj, objc+2, objv, NSF_CSC_IMMEDIATE);
}
if (likely(result == TCL_OK)) {
/*
* Call constructor when needed
*/
if (!(object->flags & (NSF_INIT_CALLED|NSF_DESTROY_CALLED))) {
result = DispatchInitMethod(interp, object, 0, NULL, 0);
}
if (likely(result == TCL_OK)) {
Tcl_SetObjResult(interp, savedObjResult);
}
} else {
/*
* Configure failed and might have left the object in a bogus state. To
* avoid strange errors, we delete the half-baked object.
*/
Tcl_Obj *errObj;
/*
* Preserve the outer error message, calls triggered by
* DispatchDestroyMethod() can cause the interp result to be reset
*/
errObj = Tcl_GetObjResult(interp);
INCR_REF_COUNT(errObj);
DispatchDestroyMethod(interp, (NsfObject *)object, 0);
Tcl_SetObjResult(interp, errObj);
DECR_REF_COUNT(errObj);
}
NsfCleanupObject(object, "obj init");
DECR_REF_COUNT(savedObjResult);
return result;
}
/*
*----------------------------------------------------------------------
* IsRootMetaClass --
*
* Check, of the class has the Root meta class flag set.
*
* Results:
* Boolean
*
* Side effects:
* None
*
*----------------------------------------------------------------------
*/
static int
IsRootMetaClass(NsfClass *cl) {
assert(cl != NULL);
return cl->object.flags & NSF_IS_ROOT_META_CLASS;
}
/*
*----------------------------------------------------------------------
* IsBaseClass --
*
* Check, whether the object is a base class.
*
* Results:
* Boolean
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static int
IsBaseClass(NsfObject *object) {
assert(object != NULL);
return object->flags & (NSF_IS_ROOT_CLASS|NSF_IS_ROOT_META_CLASS);
}
/*
*----------------------------------------------------------------------
* IsRootClass --
*
* Check, whether the object is a root class.
*
* Results:
* Boolean
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static int
IsRootClass(NsfClass *cls) {
assert(cls != NULL);
return cls->object.flags & (NSF_IS_ROOT_CLASS);
}
/*
*----------------------------------------------------------------------
* IsMetaClass --
*
* Check, whether the object is a meta class. Optionally, mixins are
* checked as well.
*
* Results:
* Boolean
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static int
IsMetaClass(Tcl_Interp *interp, NsfClass *cl, int withMixins) {
NsfClasses *pl;
assert(interp != NULL);
assert(cl != NULL);
/* is the class the most general meta-class? */
if (IsRootMetaClass(cl)) {
return 1;
}
/* is the class a subclass of a meta-class? */
for (pl = PrecedenceOrder(cl); pl; pl = pl->nextPtr) {
if (IsRootMetaClass(pl->cl)) {
return 1;
}
}
if (withMixins == 1) {
NsfClasses *checkList = NULL, *mixinClasses = NULL, *mc;
int hasMCM = 0;
/* has the class metaclass mixed in? */
NsfClassListAddPerClassMixins(interp, cl, &mixinClasses, &checkList);
for (mc = mixinClasses; mc; mc = mc->nextPtr) {
if (IsMetaClass(interp, mc->cl, 0)) {
hasMCM = 1;
break;
}
}
if (mixinClasses != NULL) NsfClassListFree(mixinClasses);
if (checkList != NULL) NsfClassListFree(checkList);
/*fprintf(stderr, "has MC returns %d, mixinClasses = %p\n",
hasMCM, mixinClasses);*/
return hasMCM;
} else {
return 0;
}
}
/*
*----------------------------------------------------------------------
* IsSubType --
*
* Check, whether a class is a subclass of another class
*
* Results:
* Boolean
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static int
IsSubType(NsfClass *subcl, NsfClass *cl) {
assert(subcl != NULL);
assert(cl != NULL);
if (cl != subcl) {
return NsfClassListFind(PrecedenceOrder(subcl), cl) != NULL;
}
return 1;
}
/*
*----------------------------------------------------------------------
* HasMixin --
*
* Check, whether the specified object the the specified class as mixin.
*
* Results:
* Boolean
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static int HasMixin(Tcl_Interp *interp, NsfObject *object, NsfClass *cl)
nonnull(1) nonnull(2) nonnull(3);
static int
HasMixin(Tcl_Interp *interp, NsfObject *object, NsfClass *cl) {
assert(interp != NULL);
assert(object != NULL);
assert(cl != NULL);
if (!(object->flags & NSF_MIXIN_ORDER_VALID)) {
MixinComputeDefined(interp, object);
}
if ((object->flags & NSF_MIXIN_ORDER_DEFINED_AND_VALID)) {
NsfCmdList *ml;
for (ml = object->mixinOrder; ml; ml = ml->nextPtr) {
NsfClass *mixin = NsfGetClassFromCmdPtr(ml->cmdPtr);
if (mixin == cl) {
return 1;
}
}
}
return 0;
}
/*
*----------------------------------------------------------------------
* ImportInstVarIntoCurrentScope --
*
* Import an instance variable into the corrent variable scope
* (e.g. function scope).
*
* Results:
* Boolean
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static int ImportInstVarIntoCurrentScope(Tcl_Interp *interp, const char *cmdName, NsfObject *object,
Tcl_Obj *varName, Tcl_Obj *newName)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static int
ImportInstVarIntoCurrentScope(Tcl_Interp *interp, const char *cmdName, NsfObject *object,
Tcl_Obj *varName, Tcl_Obj *newName) {
Var *otherPtr = NULL, *arrayPtr;
unsigned int flogs = TCL_LEAVE_ERR_MSG;
Tcl_CallFrame *varFramePtr;
CallFrame frame, *framePtr = &frame;
const char *varNameString;
assert(interp != NULL);
assert(cmdName != NULL);
assert(object != NULL);
assert(varName != NULL);
if (CheckVarName(interp, ObjStr(varName)) != TCL_OK) {
return TCL_ERROR;
}
Nsf_PushFrameObj(interp, object, framePtr);
if (object->nsPtr != NULL) {
flogs = flogs|TCL_NAMESPACE_ONLY;
}
otherPtr = TclObjLookupVar(interp, varName, NULL, flogs, "define",
/*createPart1*/ 1, /*createPart2*/ 1, &arrayPtr);
Nsf_PopFrameObj(interp, framePtr);
if (unlikely(otherPtr == NULL)) {
return NsfPrintError(interp, "can't import variable %s into method scope: "
"can't find variable on %s",
ObjStr(varName), ObjectName(object));
}
/*
* if newName == NULL -> there is no alias, use varName
* as target link name
*/
if (newName == NULL) {
/*
* Variable link into namespace cannot be an element in an array.
* see Tcl_VariableObjCmd ...
*/
if (arrayPtr != NULL) {
return NsfPrintError(interp, "can't make instance variable %s on %s: "
"Variable cannot be an element in an array; use e.g. an alias.",
ObjStr(varName), ObjectName(object));
}
newName = varName;
}
varNameString = ObjStr(newName);
varFramePtr = (Tcl_CallFrame *)Tcl_Interp_varFramePtr(interp);
/*
* If we are executing inside a Tcl procedure, create a local
* variable linked to the new namespace variable "varName".
*/
if (varFramePtr && (Tcl_CallFrame_isProcCallFrame(varFramePtr) & FRAME_IS_PROC)) {
Var *varPtr = (Var *)CompiledLocalsLookup((CallFrame *)varFramePtr, varNameString);
int new = 0;
if (varPtr == NULL) {
/*
* Look in frame's local var hash-table.
*/
TclVarHashTable *varTablePtr = Tcl_CallFrame_varTablePtr(varFramePtr);
if (varTablePtr == NULL) {
/*
* The variable table does not exist. This seems to be is the
* first access to a variable on this frame. We create the and
* initialize the variable hash-table and update the object
*/
/*fprintf(stderr, "+++ create varTable in ImportInstVarIntoCurrentScope\n");*/
Tcl_CallFrame_varTablePtr(varFramePtr) = varTablePtr = VarHashTableCreate();
}
varPtr = VarHashCreateVar(varTablePtr, newName, &new);
}
/*
* If we define an alias (newName != varName), be sure that
* the target does not exist already.
*/
if (new == 0) {
/*fprintf(stderr, "GetIntoScope create alias\n");*/
if (unlikely(varPtr == otherPtr)) {
return NsfPrintError(interp, "can't instvar to variable itself");
}
if (TclIsVarLink(varPtr)) {
/*
* We try to make the same instvar again ... this is ok
*/
Var *linkPtr = TclVarValue(Var, varPtr, linkPtr);
if (linkPtr == otherPtr) {
return TCL_OK;
}
/*fprintf(stderr, "linkvar flags=%x\n", linkPtr->flags);
Tcl_Panic("new linkvar %s... When does this happen?", ObjStr(newName), NULL);*/
/*
* We have already a variable with the same name imported
* from a different object. Get rid of this old variable.
*/
VarHashRefCount(linkPtr)--;
if (TclIsVarUndefined(linkPtr)) {
TclCleanupVar(linkPtr, (Var *) NULL);
}
} else if (unlikely(TclIsVarUndefined(varPtr) == 0)) {
return NsfPrintError(interp, "varName '%s' exists already", varNameString);
} else if (unlikely(TclIsVarTraced(varPtr) != 0)) {
return NsfPrintError(interp, "varName '%s' has traces: can't use for instvar", varNameString);
}
}
TclSetVarLink(varPtr);
TclClearVarUndefined(varPtr);
varPtr->value.linkPtr = otherPtr;
VarHashRefCount(otherPtr)++;
/* fprintf(stderr, "defining an alias var='%s' in obj %s fwd %d flags %x isLink %d isTraced %d isUndefined %d\n",
ObjStr(newName), ObjectName(object),
0,
varPtr->flags,
TclIsVarLink(varPtr), TclIsVarTraced(varPtr), TclIsVarUndefined(varPtr));
*/
} else {
return NsfPrintError(interp, "%s cannot import variable '%s' into method scope; "
"not called from a method frame", cmdName, varNameString);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* SetInstVar --
*
* Set an instance variable of the specified object to the given value.
*
* Results:
* Tcl result code.
*
* Side effects:
* Set instance variable.
*
*----------------------------------------------------------------------
*/
static int
SetInstVar(Tcl_Interp *interp, NsfObject *object, Tcl_Obj *nameObj, Tcl_Obj *valueObj) {
CallFrame frame, *framePtr = &frame;
Tcl_Obj *resultObj;
unsigned int flags;
assert(interp != NULL);
assert(object != NULL);
assert(nameObj != NULL);
flags = (object->nsPtr) ? TCL_LEAVE_ERR_MSG|TCL_NAMESPACE_ONLY : TCL_LEAVE_ERR_MSG;
Nsf_PushFrameObj(interp, object, framePtr);
if (likely(valueObj == NULL)) {
resultObj = Tcl_ObjGetVar2(interp, nameObj, NULL, flags);
} else {
/*fprintf(stderr, "setvar in obj %s: name %s = %s\n", ObjectName(object), ObjStr(nameObj), ObjStr(value));*/
resultObj = Tcl_ObjSetVar2(interp, nameObj, NULL, valueObj, flags);
}
Nsf_PopFrameObj(interp, framePtr);
if (resultObj != NULL) {
Tcl_SetObjResult(interp, resultObj);
return TCL_OK;
}
return TCL_ERROR;
}
/*
*----------------------------------------------------------------------
* SetInstArray --
*
* Set an instance variable array of the specified object to the given
* value. This function performs essentially an "array set" or "array get"
* operation.
*
* Results:
* Tcl result code.
*
* Side effects:
* Set instance variable.
*
*----------------------------------------------------------------------
*/
static int SetInstArray(Tcl_Interp *interp, NsfObject *object, Tcl_Obj *arrayNameObj, Tcl_Obj *valueObj)
nonnull(1) nonnull(2) nonnull(3);
static int
SetInstArray(Tcl_Interp *interp, NsfObject *object, Tcl_Obj *arrayNameObj, Tcl_Obj *valueObj) {
CallFrame frame, *framePtr = &frame;
int result;
Tcl_Obj *ov[4];
assert(interp != NULL);
assert(object != NULL);
assert(arrayNameObj != NULL);
Nsf_PushFrameObj(interp, object, framePtr);
ov[0] = NsfGlobalObjs[NSF_ARRAY];
ov[2] = arrayNameObj;
INCR_REF_COUNT(arrayNameObj);
if (valueObj == NULL) {
/*
* Perform an array get
*/
ov[1] = NsfGlobalObjs[NSF_GET];
result = Tcl_EvalObjv(interp, 3, ov, 0);
} else {
/*
* Perform an array get
*/
ov[1] = NsfGlobalObjs[NSF_SET];
ov[3] = valueObj;
INCR_REF_COUNT(valueObj);
result = Tcl_EvalObjv(interp, 4, ov, 0);
DECR_REF_COUNT(valueObj);
}
DECR_REF_COUNT(arrayNameObj);
Nsf_PopFrameObj(interp, framePtr);
return result;
}
/*
*----------------------------------------------------------------------
* UnsetInstVar --
*
* Unset an instance variable of the specified object.
*
* Results:
* Tcl result code.
*
* Side effects:
* Variable unset.
*
*----------------------------------------------------------------------
*/
static int UnsetInstVar(Tcl_Interp *interp, int withNocomplain, NsfObject *object, const char *name)
nonnull(1) nonnull(3) nonnull(4);
static int
UnsetInstVar(Tcl_Interp *interp, int withNocomplain, NsfObject *object, const char *name) {
CallFrame frame, *framePtr = &frame;
unsigned int flags;
int result;
assert(interp != NULL);
assert(object != NULL);
assert(name != NULL);
flags = (withNocomplain != 0) ? 0 : TCL_LEAVE_ERR_MSG;
if (object->nsPtr != NULL) {flags |= TCL_NAMESPACE_ONLY;}
Nsf_PushFrameObj(interp, object, framePtr);
result = Tcl_UnsetVar2(interp, name, NULL, flags);
Nsf_PopFrameObj(interp, framePtr);
return (withNocomplain != 0) ? TCL_OK : result;
}
/*
*----------------------------------------------------------------------
* NsfSetterMethod --
*
* This Tcl_ObjCmdProc is called, when a setter method is invoked. A setter
* is a method that accesses/modifies a same-named instance variable. If
* the setter is called without arguments, it returns the values, if it is
* called with one argument, the argument is used as new value.
*
* Results:
* Tcl result code.
*
* Side effects:
* Can set an instance variable.
*
*----------------------------------------------------------------------
*/
static int NsfSetterMethod(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[])
nonnull(1) nonnull(2) nonnull(4);
static int
NsfSetterMethod(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[]) {
SetterCmdClientData *cd = (SetterCmdClientData *)clientData;
NsfObject *object = cd->object;
assert(clientData != NULL);
assert(interp != NULL);
assert(objv != NULL);
if (objc > 2) {
return NsfObjWrongArgs(interp, "wrong # args", object->cmdName,
NsfMethodNamePath(interp, CallStackGetTclFrame(interp, NULL, 1),
NsfMethodName(objv[0])), "?value?");
}
if (object == NULL) return NsfDispatchClientDataError(interp, clientData, "object", ObjStr(objv[0]));
if (cd->paramsPtr && objc == 2) {
Tcl_Obj *outObjPtr;
int result;
unsigned flags = 0;
ClientData checkedData;
result = ArgumentCheck(interp, objv[1], cd->paramsPtr,
RUNTIME_STATE(interp)->doCheckArguments,
&flags, &checkedData, &outObjPtr);
if (likely(result == TCL_OK)) {
result = SetInstVar(interp, object, objv[0], outObjPtr);
}
if (flags & NSF_PC_MUST_DECR) {
DECR_REF_COUNT2("valueObj", outObjPtr);
}
return result;
} else {
return SetInstVar(interp, object, objv[0], objc == 2 ? objv[1] : NULL);
}
}
/*
*----------------------------------------------------------------------
* NsfForwardPrintError --
*
* Helper function to print either an error message directly to call the
* forwarder specific callback method specified in
* tcd->onerror. Background: ForwardArg() is called at runtime to
* substitute the argument list. Catching such errors is not conveniently
* doable via catch, since it would be necessary to wrap every possible
* usage of a forwarder in a catch. Therefore the callback function can be
* used to give a sensible error message appropriate for each context.
*
* Results:
* Tcl result code.
*
* Side effects:
* Potential side effects through the script.
*
*----------------------------------------------------------------------
*/
static int
NsfForwardPrintError(Tcl_Interp *interp, ForwardCmdClientData *tcd,
int objc, Tcl_Obj *CONST objv[],
const char *fmt, ...)
nonnull(1) nonnull(2) nonnull(5) NSF_attribute_format((printf,5,6));
static int
NsfForwardPrintError(Tcl_Interp *interp, ForwardCmdClientData *tcd,
int objc, Tcl_Obj *CONST objv[],
const char *fmt, ...) {
Tcl_DString ds;
va_list ap;
int result;
assert(interp != NULL);
assert(tcd != NULL);
assert(fmt != NULL);
Tcl_DStringInit(&ds);
va_start(ap, fmt);
NsfDStringVPrintf(&ds, fmt, ap);
va_end(ap);
if (tcd->onerror != NULL) {
Tcl_Obj *script = Tcl_DuplicateObj(tcd->onerror);
Tcl_Obj *cmd;
if (tcd->object != NULL) {
cmd = Tcl_DuplicateObj(tcd->object->cmdName);
if (objc > 0) {
Tcl_ListObjAppendList(interp, cmd,
NsfMethodNamePath(interp,
CallStackGetTclFrame(interp, NULL, 1),
MethodName(objv[0])));
if (objc > 1) {
Tcl_ListObjAppendElement(interp, cmd, Tcl_NewListObj(objc-1,objv+1));
}
}
} else {
cmd = Tcl_NewListObj(objc, objv);
}
Tcl_ListObjAppendElement(interp, script, cmd);
Tcl_ListObjAppendElement(interp, script,
Tcl_NewStringObj(Tcl_DStringValue(&ds),
Tcl_DStringLength(&ds)));
INCR_REF_COUNT(script);
result = Tcl_EvalObjEx(interp, script, TCL_EVAL_DIRECT);
DECR_REF_COUNT(script);
} else {
result = NsfPrintError(interp, "%s", Tcl_DStringValue(&ds));
}
Tcl_DStringFree(&ds);
return result;
}
/*
*----------------------------------------------------------------------
* ForwardArg --
*
* This function is a helper function of NsfForwardMethod() and processes a
* single entry (ForwardArgObj) of the forward spec. Essentially, it
* performs the percent substitution of the forward spec.
*
* Results:
* Tcl result code.
*
* Side effects:
* Updates the provided output arguments.
*
*----------------------------------------------------------------------
*/
static int ForwardArg(Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[],
Tcl_Obj *ForwardArgObj, ForwardCmdClientData *tcd, Tcl_Obj **out,
Tcl_Obj **freeList, int *inputArg, int *mapvalue,
int firstPosArg, int *outputincr)
nonnull(1) nonnull(3) nonnull(4) nonnull(5) nonnull(6) nonnull(7) nonnull(8) nonnull(9) nonnull(11);
static int
ForwardArg(Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[],
Tcl_Obj *forwardArgObj, ForwardCmdClientData *tcd, Tcl_Obj **out,
Tcl_Obj **freeList, int *inputArg, int *mapvalue,
int firstPosArg, int *outputincr) {
const char *ForwardArgString = ObjStr(forwardArgObj), *p;
int totalargs;
char c = *ForwardArgString;
assert(interp != NULL);
assert(objv != NULL);
assert(forwardArgObj != NULL);
assert(tcd != NULL);
assert(out != NULL);
assert(freeList != NULL);
assert(inputArg != NULL);
assert(mapvalue != NULL);
assert(outputincr != NULL);
totalargs = objc + tcd->nr_args - 1;
/*
* Per default every ForwardArgString from the processed list corresponds to
* exactly one ForwardArgString in the computed final list.
*/
*outputincr = 1;
p = ForwardArgString;
/* fprintf(stderr, "ForwardArg: processing '%s'\n", ForwardArgString);*/
if (c == '%' && *(ForwardArgString+1) == '@') {
char *remainder = NULL;
long pos;
ForwardArgString += 2;
pos = strtol(ForwardArgString, &remainder, 0);
/*fprintf(stderr, "strtol('%s) returned %ld '%s'\n", ForwardArgString, pos, remainder);*/
if (ForwardArgString == remainder && *ForwardArgString == 'e'
&& !strncmp(ForwardArgString, "end", 3)) {
pos = -1;
remainder += 3;
} else if (pos < 0) {
pos --;
}
if (ForwardArgString == remainder || labs(pos) > totalargs) {
return NsfForwardPrintError(interp, tcd, objc, objv,
"forward: invalid index specified in argument %s",
ObjStr(forwardArgObj));
}
if (!remainder || *remainder != ' ') {
return NsfForwardPrintError(interp, tcd, objc, objv,
"forward: invalid syntax in '%s'; use: %%@ ",
ObjStr(forwardArgObj));
}
ForwardArgString = ++remainder;
/*
* In case we address from the end, we reduct further to distinguish from
* -1 (void)
*/
if (pos < 0) pos--;
/*fprintf(stderr, "remainder = '%s' pos = %ld\n", remainder, pos);*/
*mapvalue = pos;
c = *ForwardArgString;
}
if (c == '%') {
Tcl_Obj *list = NULL, **listElements;
int nrArgs = objc-1, nrPosArgs = objc - firstPosArg, nrElements = 0;
char c1, *firstActualArgument = nrArgs > 0 ? ObjStr(objv[1]) : NULL;
c = *++ForwardArgString;
c1 = *(ForwardArgString+1);
if (c == 's' && !strcmp(ForwardArgString, "self")) {
*out = tcd->object->cmdName;
} else if ((c == 'p' && !strcmp(ForwardArgString, "proc"))
|| (c == 'm' && !strcmp(ForwardArgString, "method"))
) {
const char *methodName = ObjStr(objv[0]);
/*
* If we dispatch a method via ".", we do not want to see the "." in the
* %proc, e.g. for the interceptor slots (such as mixin, ...)
*/
if (FOR_COLON_RESOLVER(methodName)) {
*out = Tcl_NewStringObj(methodName + 1, -1);
} else {
*out = objv[0];
}
} else if (c == '1' && (c1 == '\0' || c1 == ' ')) {
if (c1 != '\0') {
if (unlikely(Tcl_ListObjIndex(interp, forwardArgObj, 1, &list) != TCL_OK)) {
return NsfForwardPrintError(interp, tcd, objc, objv,
"forward: %%1 must be followed by a valid list, given: '%s'",
ObjStr(forwardArgObj));
}
if (unlikely(Tcl_ListObjGetElements(interp, list, &nrElements, &listElements) != TCL_OK)) {
return NsfForwardPrintError(interp, tcd, objc, objv,
"forward: %%1 contains invalid list '%s'",
ObjStr(list));
}
} else if (unlikely(tcd->subcommands != NULL)) { /* deprecated part */
if (Tcl_ListObjGetElements(interp, tcd->subcommands, &nrElements, &listElements) != TCL_OK) {
return NsfForwardPrintError(interp, tcd, objc, objv,
"forward: %%1 contains invalid list '%s'",
ObjStr(tcd->subcommands));
}
} else {
assert(nrElements <= nrPosArgs);
}
/*fprintf(stderr, "nrElements=%d, nra=%d firstPos %d objc %d\n",
nrElements, nrArgs, firstPosArg, objc);*/
if (nrElements > nrPosArgs) {
/*
* Insert default subcommand depending on number of arguments.
*/
/*fprintf(stderr, "inserting listElements[%d] '%s'\n", nrPosArgs,
ObjStr(listElements[nrPosArgs]));*/
*out = listElements[nrPosArgs];
} else if (objc <= 1) {
return NsfForwardPrintError(interp, tcd, objc, objv,
"%%1 requires argument; should be \"%s arg ...\"",
ObjStr(objv[0]));
} else {
/*fprintf(stderr, "copying %%1: '%s'\n", ObjStr(objv[firstPosArg]));*/
*out = objv[firstPosArg];
*inputArg = firstPosArg+1;
}
} else if (c == '-') {
const char *firstElementString;
int insertRequired, done = 0;
/*fprintf(stderr, "process flag '%s'\n", firstActualArgument);*/
if (Tcl_ListObjGetElements(interp, forwardArgObj, &nrElements, &listElements) != TCL_OK) {
return NsfForwardPrintError(interp, tcd, objc, objv,
"forward: '%s' is not a valid list",
ForwardArgString);
}
if (nrElements < 1 || nrElements > 2) {
return NsfForwardPrintError(interp, tcd, objc, objv,
"forward: '%s': must contain 1 or 2 arguments",
ForwardArgString);
}
firstElementString = ObjStr(listElements[0]);
firstElementString++; /* we skip the dash */
if (firstActualArgument && *firstActualArgument == '-') {
int i;
/*fprintf(stderr, "we have a flag in first argument '%s'\n", firstActualArgument);*/
for (i = 1; i < firstPosArg; i++) {
if (strcmp(firstElementString, ObjStr(objv[i])) == 0) {
/*fprintf(stderr, "We have a MATCH for '%s' oldInputArg %d\n", ForwardArgString, *inputArg);*/
*out = objv[i];
/* %1 will start at a different place. Proceed if necessary to firstPosArg */
if (*inputArg < firstPosArg) {
*inputArg = firstPosArg;
}
done = 1;
break;
}
}
}
if (done == 0) {
/*
* We have a flag in the actual arguments that does not match. We
* proceed to the actual arguments without dashes.
*/
if (*inputArg < firstPosArg) {
*inputArg = firstPosArg;
}
/*
* If the user requested we output the argument also when not
* given in the argument list.
*/
if (nrElements == 2
&& Tcl_GetIntFromObj(interp, listElements[1], &insertRequired) == TCL_OK
&& insertRequired) {
/*
* No match, but insert of flag is required.
*/
/*fprintf(stderr, "no match, but insert of %s required\n", firstElementString);*/
*out = Tcl_NewStringObj(firstElementString, -1);
*outputincr = 1;
goto add_to_freelist;
} else {
/*
* No match, no insert of flag required, we skip the forwarder
* option and output nothing.
*/
/*fprintf(stderr, "no match, nrElements %d insert req %d\n", nrElements, insertRequired);*/
*outputincr = 0;
}
}
} else if (c == 'a' && !strncmp(ForwardArgString, "argcl", 4)) {
if (Tcl_ListObjIndex(interp, forwardArgObj, 1, &list) != TCL_OK) {
return NsfForwardPrintError(interp, tcd, objc, objv,
"forward: %%argclindex must by a valid list, given: '%s'",
ForwardArgString);
}
if (Tcl_ListObjGetElements(interp, list, &nrElements, &listElements) != TCL_OK) {
return NsfForwardPrintError(interp, tcd, objc, objv,
"forward: %%argclindex contains invalid list '%s'",
ObjStr(list));
}
if (nrArgs >= nrElements) {
return NsfForwardPrintError(interp, tcd, objc, objv,
"forward: not enough elements in specified list of ARGC argument %s",
ForwardArgString);
}
*out = listElements[nrArgs];
} else if (c == '%') {
Tcl_Obj *newarg = Tcl_NewStringObj(ForwardArgString, -1);
*out = newarg;
goto add_to_freelist;
} else {
/*
* Evaluate the given command
*/
int result;
/*fprintf(stderr, "evaluating '%s'\n", ForwardArgString);*/
if ((result = Tcl_EvalEx(interp, ForwardArgString, -1, 0)) != TCL_OK) {
return result;
}
*out = Tcl_DuplicateObj(Tcl_GetObjResult(interp));
/*fprintf(stderr, "result = '%s'\n", ObjStr(*out));*/
goto add_to_freelist;
}
} else {
if (likely(p == ForwardArgString)) {
*out = forwardArgObj;
} else {
Tcl_Obj *newarg = Tcl_NewStringObj(ForwardArgString, -1);
*out = newarg;
goto add_to_freelist;
}
}
return TCL_OK;
add_to_freelist:
if (!*freeList) {
*freeList = Tcl_NewListObj(1, out);
INCR_REF_COUNT2("freeList", *freeList);
} else {
Tcl_ListObjAppendElement(interp, *freeList, *out);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* CallForwarder --
*
* Invoke the method to which the forwarder points. This function receives
* the already transformed argument vector, calls the method and performs
* error handling.
*
* Results:
* Tcl result code.
*
* Side effects:
* Maybe through the invoked command.
*
*----------------------------------------------------------------------
*/
static int CallForwarder(ForwardCmdClientData *tcd, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[])
nonnull(1) nonnull(2) nonnull(4);
static int
CallForwarder(ForwardCmdClientData *tcd, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[]) {
int result;
NsfObject *object;
CallFrame frame, *framePtr = &frame;
assert(tcd != NULL);
assert(interp != NULL);
assert(objv != NULL);
object = tcd->object;
tcd->object = NULL;
if (unlikely(tcd->verbose)) {
Tcl_Obj *cmd = Tcl_NewListObj(objc, objv);
NsfLog(interp, NSF_LOG_DEBUG, "forwarder calls '%s'", ObjStr(cmd));
DECR_REF_COUNT(cmd);
}
if (tcd->frame == FrameObjectIdx) {
Nsf_PushFrameObj(interp, object, framePtr);
}
if (tcd->objProc != NULL) {
/*fprintf(stderr, "CallForwarder Tcl_NRCallObjProc %p\n", tcd->clientData);*/
result = Tcl_NRCallObjProc(interp, tcd->objProc, tcd->clientData, objc, objv);
} else if (TclObjIsNsfObject(interp, tcd->cmdName, &object)) {
/*fprintf(stderr, "CallForwarder NsfObjDispatch object %s, objc=%d\n",
ObjStr(tcd->cmdName), objc);*/
if (likely(objc > 1)) {
result = ObjectDispatch(object, interp, objc, objv, NSF_CSC_IMMEDIATE);
} else {
result = DispatchDefaultMethod(interp, object, objv[0], NSF_CSC_IMMEDIATE);
}
} else {
/*fprintf(stderr, "CallForwarder: no nsf object %s [0] %s\n", ObjStr(tcd->cmdName), ObjStr(objv[0]));*/
result = Tcl_EvalObjv(interp, objc, objv, 0);
}
if (tcd->frame == FrameObjectIdx) {
Nsf_PopFrameObj(interp, framePtr);
}
#if defined(NSF_FORWARD_WITH_ONERROR)
if (unlikely(result == TCL_ERROR && tcd->onerror)) {
result = NsfForwardPrintError(interp, tcd, objc, objv, "%s",
ObjStr(Tcl_GetObjResult(interp)));
}
#endif
return result;
}
/*
*----------------------------------------------------------------------
* NsfForwardMethod --
*
* This Tcl_ObjCmdProc is called, when a forwarder is invoked. It performs
* argument substitution through ForwardArg() and calls finally the method,
* to which the call was forwarded via CallForwarder().
*
* Results:
* Tcl result code.
*
* Side effects:
* Maybe through the invoked command.
*
*----------------------------------------------------------------------
*/
static int NsfForwardMethod(ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *CONST objv[])
nonnull(1) nonnull(2) nonnull(4);
static int
NsfForwardMethod(ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *CONST objv[]) {
ForwardCmdClientData *tcd = (ForwardCmdClientData *)clientData;
int result, inputArg = 1;
assert(clientData != NULL);
assert(interp != NULL);
assert(objv != NULL);
if (unlikely(!tcd || !tcd->object)) {
return NsfDispatchClientDataError(interp, tcd, "object",
objc > 0 ? ObjStr(objv[0]) : "forwarder");
}
/*
* First, we handle two short cuts for simple cases.
*/
if (tcd->passthrough != 0) {
/*
* This is set for early binding. This means, that the cmd is already
* resolved, we have to care only for objscope.
*/
return CallForwarder(tcd, interp, objc, objv);
} else if (tcd->args == NULL && *(ObjStr(tcd->cmdName)) != '%') {
/*
* We have have no args, therefore we have only to replace the method name
* with the given cmd name.
*/
ALLOC_ON_STACK(Tcl_Obj*, objc, ov);
/*fprintf(stderr, "+++ forwardMethod must subst oc=%d <%s>\n",
objc, ObjStr(tcd->cmdName));*/
memcpy(ov, objv, sizeof(Tcl_Obj *)*objc);
ov[0] = tcd->cmdName;
result = CallForwarder(tcd, interp, objc, ov);
FREE_ON_STACK(Tcl_Obj *, ov);
return result;
} else {
Tcl_Obj **ov, *freeList = NULL;
int j, outputincr, outputArg = 0, firstPosArg=1,
totalargs = objc + tcd->nr_args + 3;
ALLOC_ON_STACK(Tcl_Obj*, totalargs, OV);
ALLOC_ON_STACK(int, totalargs, objvmap);
/*fprintf(stderr, "+++ forwardMethod standard case, allocated %d args, tcd->args %s\n",
totalargs, ObjStr(tcd->args));*/
ov = &OV[1];
if (tcd->needobjmap != 0) {
memset(objvmap, -1, sizeof(int)*totalargs);
}
/*
* The first argument is always the command, to which we forward.
*/
if ((result = ForwardArg(interp, objc, objv, tcd->cmdName, tcd,
&ov[outputArg], &freeList, &inputArg,
&objvmap[outputArg],
firstPosArg, &outputincr)) != TCL_OK) {
goto exitforwardmethod;
}
outputArg += outputincr;
/*
* If we have nonpos args, determine the first pos arg position for %1
*/
if (tcd->hasNonposArgs != 0) {
firstPosArg = objc;
for (j = outputArg; j < objc; j++) {
const char *arg = ObjStr(objv[j]);
if (*arg != '-') {
firstPosArg = j;
break;
}
}
}
if (tcd->args != NULL) {
Tcl_Obj **listElements;
int nrElements;
/*
* Copy argument list from the definitions.
*/
Tcl_ListObjGetElements(interp, tcd->args, &nrElements, &listElements);
for (j = 0; j < nrElements; j++, outputArg += outputincr) {
if ((result = ForwardArg(interp, objc, objv, listElements[j], tcd,
&ov[outputArg], &freeList, &inputArg,
&objvmap[outputArg],
firstPosArg, &outputincr)) != TCL_OK) {
goto exitforwardmethod;
}
}
}
/*fprintf(stderr, "objc=%d, tcd->nr_subcommands=%d size=%d\n",
objc, tcd->nr_subcommands, objc+ 2 );*/
if (objc-inputArg > 0) {
/*fprintf(stderr, " copying remaining %d args starting at [%d]\n",
objc-inputArg, outputArg);*/
memcpy(ov+outputArg, objv+inputArg, sizeof(Tcl_Obj *)*(objc-inputArg));
} else {
/*fprintf(stderr, " nothing to copy, objc=%d, inputArg=%d\n", objc, inputArg);*/
}
if (tcd->needobjmap != 0) {
/*
* The objmap can shuffle the argument list. We have to set the
* addressing relative from the end; -2 means last, -3 element before
* last, etc.
*/
int max = objc + tcd->nr_args - inputArg;
for (j = 0; j < totalargs; j++) {
if (objvmap[j] < -1) {
/*fprintf(stderr, "must reduct, v=%d\n", objvmap[j]);*/
objvmap[j] = max + objvmap[j] + 2;
/*fprintf(stderr, "... new value=%d, max = %d\n", objvmap[j], max);*/
}
}
}
objc += outputArg - inputArg;
#if 0
for(j = 0; j < objc; j++) {
/*fprintf(stderr, " ov[%d]=%p, objc=%d\n", j, ov[j], objc);*/
fprintf(stderr, " o[%d]=%p %s (%d),", j, ov[j], ov[j] ? ObjStr(ov[j]) : "NADA", objvmap[j]);
}
fprintf(stderr, "\n");
#endif
if (tcd->needobjmap != 0) {
for (j = 0; j < totalargs; j++) {
Tcl_Obj *tmp;
int pos = objvmap[j], i;
if (pos == -1 || pos == j) {
continue;
}
tmp = ov[j];
if (j > pos) {
for(i = j; i > pos; i--) {
/*fprintf(stderr, "...moving right %d to %d\n", i-1, i);*/
ov[i] = ov[i-1];
objvmap[i] = objvmap[i-1];
}
} else {
for(i = j; i < pos; i++) {
/*fprintf(stderr, "...moving left %d to %d\n", i+1, i);*/
ov[i] = ov[i+1];
objvmap[i] = objvmap[i+1];
}
}
/*fprintf(stderr, "...setting at %d -> %s\n", pos, ObjStr(tmp));*/
ov[pos] = tmp;
objvmap[pos] = -1;
}
}
/*
If a prefix is provided, it will be prepended to the 2nd argument. This
allows for avoiding name clashes if the 2nd argument denotes a
subcommand, for example.
Make sure that the prefix is only prepended, if a second arg is
actually available! Otherwise, the requested prefix has no effect.
*/
if (tcd->prefix && objc > 1) {
Tcl_Obj *methodName = Tcl_DuplicateObj(tcd->prefix);
Tcl_AppendObjToObj(methodName, ov[1]);
ov[1] = methodName;
INCR_REF_COUNT(ov[1]);
}
#if 0
for(j = 0; j < objc; j++) {
/*fprintf(stderr, " ov[%d]=%p, objc=%d\n", j, ov[j], objc);*/
fprintf(stderr, " ov[%d]=%p '%s' map=%d\n", j, ov[j], ov[j] ? ObjStr(ov[j]) : "NADA", objvmap[j]);
}
#endif
OV[0] = tcd->cmdName;
result = CallForwarder(tcd, interp, objc, ov);
if (tcd->prefix && objc > 1) {
DECR_REF_COUNT(ov[1]);
}
exitforwardmethod:
if (freeList != NULL) {DECR_REF_COUNT2("freeList", freeList);}
FREE_ON_STACK(int, objvmap);
FREE_ON_STACK(Tcl_Obj*, OV);
}
return result;
}
/*
*----------------------------------------------------------------------
* NsfProcAliasMethod --
*
* Since alias-resolving happens in dispatch, this Tcl_ObjCmdProc should
* never be called during normal operations. The only way to invoke this
* could happen via directly calling the handle.
*
* Results:
* TCL_ERROR
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int NsfProcAliasMethod(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *CONST objv[])
nonnull(1) nonnull(2) nonnull(4);
static int
NsfProcAliasMethod(ClientData clientData,
Tcl_Interp *interp, int objc,
Tcl_Obj *CONST objv[]) {
AliasCmdClientData *tcd = (AliasCmdClientData *)clientData;
assert(clientData != NULL);
assert(interp != NULL);
assert(objv != NULL);
return NsfDispatchClientDataError(interp, NULL, "object",
Tcl_GetCommandName(interp, tcd->aliasCmd));
}
/*
*----------------------------------------------------------------------
* NsfObjscopedMethod --
*
* This Tcl_ObjCmdProc is called, when an objscoped alias is invoked.
*
* Results:
* Tcl result code.
*
* Side effects:
* Maybe through the invoked command.
*
*----------------------------------------------------------------------
*/
static int NsfObjscopedMethod(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[])
nonnull(1) nonnull(2) nonnull(4);
static int
NsfObjscopedMethod(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[]) {
AliasCmdClientData *tcd = (AliasCmdClientData *)clientData;
NsfObject *object = tcd->object;
CallFrame frame, *framePtr = &frame;
int result;
assert(clientData != NULL);
assert(interp != NULL);
assert(objv != NULL);
/*fprintf(stderr, "objscopedMethod obj=%p %s, ptr=%p\n", object, ObjectName(object), tcd->objProc);*/
tcd->object = NULL;
Nsf_PushFrameObj(interp, object, framePtr);
result = Tcl_NRCallObjProc(interp, tcd->objProc, tcd->clientData, objc, objv);
Nsf_PopFrameObj(interp, framePtr);
return result;
}
/*
*----------------------------------------------------------------------
* IsDashArg --
*
* Check, whether the provided argument (pointed to be the index isFirstArg)
* starts with a "-", or is a list starting with a "-". The method returns
* via **methodName the name of the dashed argument (without the dash).
*
* Results:
* Enum value dashArgType.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
typedef enum {NO_DASH, SKALAR_DASH, LIST_DASH} dashArgType;
static dashArgType IsDashArg(Tcl_Interp *interp, Tcl_Obj *obj, int isFirstArg, const char **methodName,
int *objc, Tcl_Obj **objv[]) nonnull(1) nonnull(2) nonnull(4) nonnull(5) nonnull(6);
static dashArgType
IsDashArg(Tcl_Interp *interp, Tcl_Obj *obj, int isFirstArg, const char **methodName,
int *objcPtr, Tcl_Obj **objvPtr[]) {
const char *flag;
assert(interp != NULL);
assert(obj != NULL);
assert(methodName != NULL);
assert(objcPtr != NULL);
assert(objvPtr != NULL);
if (obj->typePtr == Nsf_OT_listType) {
if (Tcl_ListObjGetElements(interp, obj, objcPtr, objvPtr) == TCL_OK && *objcPtr > 1) {
flag = ObjStr(*objvPtr[0]);
/*fprintf(stderr, "we have a list starting with '%s'\n", flag);*/
if (*flag == '-') {
*methodName = flag+1;
return LIST_DASH;
}
}
}
flag = ObjStr(obj);
/*fprintf(stderr, "we have a scalar '%s' isFirstArg %d\n", flag, isFirstArg);*/
if ((*flag == '-') && isalpha(*((flag)+1))) {
if (isFirstArg == 1) {
/* if the argument contains a space, try to split */
const char *p= flag+1;
while (*p && *p != ' ') p++;
if (*p == ' ') {
if (Tcl_ListObjGetElements(interp, obj, objcPtr, objvPtr) == TCL_OK) {
*methodName = ObjStr(*objvPtr[0]);
if (**methodName == '-') {(*methodName)++ ;}
return LIST_DASH;
}
}
}
*methodName = flag+1;
*objcPtr = 1;
return SKALAR_DASH;
}
return NO_DASH;
}
/*
*----------------------------------------------------------------------
* CallConfigureMethod --
*
* Call a method identified by a string selector; or provide an error
* message. This dispatcher function records as well constructor (init)
* calls via this interface. The dispatcher is used in XOTcl's
* configure(), interpreting arguments with a leading dash as method dispatches.
* This behavior is now implemented in NsfOResidualargsMethod().
*
* Results:
* Tcl result code.
*
* Side effects:
* Maybe side effects from the called methods.
*
*----------------------------------------------------------------------
*/
static int CallConfigureMethod(Tcl_Interp *interp, NsfObject *object, const char *initString,
const char *methodName,
int argc, Tcl_Obj *CONST argv[])
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
static int
CallConfigureMethod(Tcl_Interp *interp, NsfObject *object, const char *initString,
const char *methodName,
int argc, Tcl_Obj *CONST argv[]) {
int result;
Tcl_Obj *methodObj = Tcl_NewStringObj(methodName, -1);
assert(interp != NULL);
assert(object != NULL);
assert(initString != NULL);
assert(methodName != NULL);
/*
* When configure gets "-init" passed, we call "init" and notice the fact it
* in the object's flags.
*/
if (*initString == *methodName && strcmp(methodName, initString) == 0) {
object->flags |= NSF_INIT_CALLED;
}
Tcl_ResetResult(interp);
INCR_REF_COUNT(methodObj);
result = CallMethod(object, interp, methodObj, argc, argv,
NSF_CM_NO_UNKNOWN|NSF_CSC_IMMEDIATE|NSF_CM_IGNORE_PERMISSIONS);
DECR_REF_COUNT(methodObj);
/*fprintf(stderr, "method '%s' called args: %d o=%p, result=%d %d\n",
methodName, argc+1, object, result, TCL_ERROR);*/
if (unlikely(result != TCL_OK)) {
Tcl_Obj *res = Tcl_DuplicateObj(Tcl_GetObjResult(interp)); /* save the result */
INCR_REF_COUNT(res);
NsfPrintError(interp, "%s during '%s.%s'", ObjStr(res), ObjectName(object), methodName);
DECR_REF_COUNT(res);
}
return result;
}
/*
* class method implementations
*/
/*
*----------------------------------------------------------------------
* IsRootNamespace --
*
* Check, if the provided namespace is the namespace of the base
* class of an object system.
*
* Results:
* Boolean value.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int IsRootNamespace(Tcl_Interp *interp, Tcl_Namespace *nsPtr) nonnull(1) nonnull(2);
static int
IsRootNamespace(Tcl_Interp *interp, Tcl_Namespace *nsPtr) {
NsfObjectSystem *osPtr;
assert(interp != NULL);
assert(nsPtr != NULL);
for (osPtr = RUNTIME_STATE(interp)->objectSystems; osPtr; osPtr = osPtr->nextPtr) {
Tcl_Command cmd = osPtr->rootClass->object.id;
if ((Tcl_Namespace *)((Command *)cmd)->nsPtr == nsPtr) {
return 1;
}
}
return 0;
}
/*
*----------------------------------------------------------------------
* CallingNameSpace --
*
* Find the last invocation outside the Next Scripting system
* namespaces. This function return the namespace of the caller but
* skips system-specific namespaces (e.g. the namespaces of the
* pre-defined slot handlers for mixin and class
* registration. etc.) If we would use such namespaces, we would
* resolve non-fully-qualified names against the root namespace).
*
* Results:
* Tcl_Namespace or NULL
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static Tcl_Namespace *
CallingNameSpace(Tcl_Interp *interp) {
Tcl_CallFrame *framePtr;
Tcl_Namespace *nsPtr;
assert(interp != NULL);
/*NsfShowStack(interp);*/
framePtr = CallStackGetActiveProcFrame((Tcl_CallFrame *)Tcl_Interp_varFramePtr(interp));
/* framePtr = BeginOfCallChain(interp, GetSelfObj(interp));*/
for (; likely(framePtr != NULL); framePtr = Tcl_CallFrame_callerVarPtr(framePtr)) {
nsPtr = Tcl_CallFrame_nsPtr(framePtr);
if (IsRootNamespace(interp, nsPtr)) {
/*fprintf(stderr, "... %p skip %s\n", framePtr, nsPtr->fullName);*/
continue;
}
/*fprintf(stderr, "... %p take %s\n", framePtr, nsPtr->fullName); */
break;
}
if (framePtr == NULL) {
nsPtr = Tcl_GetGlobalNamespace(interp);
}
/*fprintf(stderr, " **** CallingNameSpace: returns %p %s framePtr %p\n",
nsPtr, (nsPtr != NULL) ? nsPtr->fullName:"(null)", framePtr);*/
return nsPtr;
}
/***********************************
* argument handling
***********************************/
static void ArgumentResetRefCounts(struct Nsf_Param const *pPtr, Tcl_Obj *valueObj) nonnull(1) nonnull(2);
static void
ArgumentResetRefCounts(struct Nsf_Param const *pPtr, Tcl_Obj *valueObj) {
assert(pPtr != NULL);
assert(valueObj != NULL);
if ((pPtr->flags & NSF_ARG_IS_CONVERTER)) {
DECR_REF_COUNT2("valueObj", valueObj);
}
}
/*
*----------------------------------------------------------------------
* ArgumentCheckHelper --
*
* Helper function for ArgumentCheck() called when argument checking leads
* to a different output element (non-pure checking).
*
* Results:
* Tcl result code.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int ArgumentCheckHelper(Tcl_Interp *interp, Tcl_Obj *objPtr, struct Nsf_Param const *pPtr, unsigned int *flags,
ClientData *clientData, Tcl_Obj **outObjPtr)
nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(5) nonnull(6);
static int
ArgumentCheckHelper(Tcl_Interp *interp, Tcl_Obj *objPtr, struct Nsf_Param const *pPtr, unsigned int *flags,
ClientData *clientData, Tcl_Obj **outObjPtr) {
int objc, i, result;
Tcl_Obj **ov;
assert(interp != NULL);
assert(objPtr != NULL);
assert(pPtr != NULL);
assert(flags != NULL);
assert(clientData != NULL);
assert(outObjPtr != NULL);
assert(pPtr->flags & NSF_ARG_MULTIVALUED);
assert(*flags & NSF_PC_MUST_DECR);
result = Tcl_ListObjGetElements(interp, objPtr, &objc, &ov);
if (unlikely(result != TCL_OK)) {
return result;
}
*outObjPtr = Tcl_NewListObj(0, NULL);
INCR_REF_COUNT2("valueObj", *outObjPtr);
for (i = 0; i < objc; i++) {
Tcl_Obj *elementObjPtr = ov[i];
const char *valueString = ObjStr(elementObjPtr);
if (pPtr->flags & NSF_ARG_ALLOW_EMPTY && *valueString == '\0') {
result = Nsf_ConvertToString(interp, elementObjPtr, pPtr, clientData, &elementObjPtr);
} else {
result = (*pPtr->converter)(interp, elementObjPtr, pPtr, clientData, &elementObjPtr);
}
/*fprintf(stderr, "ArgumentCheckHelper convert %s result %d (%s)\n",
valueString, result, ObjStr(elementObjPtr));*/
if (result == TCL_OK || result == TCL_CONTINUE) {
Tcl_ListObjAppendElement(interp, *outObjPtr, elementObjPtr);
/*
* If the refCount of the valueObj was already incremented, we have to
* decrement it here, since we want the valuObj reclaimed when the list
* containing the valueObj is freed.
*/
ArgumentResetRefCounts(pPtr, elementObjPtr);
} else {
Tcl_Obj *resultObj = Tcl_GetObjResult(interp);
INCR_REF_COUNT(resultObj);
NsfPrintError(interp, "invalid value in \"%s\": %s", ObjStr(objPtr), ObjStr(resultObj));
*flags &= ~NSF_PC_MUST_DECR;
*outObjPtr = objPtr;
DECR_REF_COUNT2("valueObj", *outObjPtr);
DECR_REF_COUNT(resultObj);
break;
}
}
return result;
}
/*
*----------------------------------------------------------------------
* ArgumentCheck --
*
* Check a single argument (2nd argument) against the parameter structure
* when argument checking is turned on (default).
*
* Results:
* Standard Tcl result
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int
ArgumentCheck(Tcl_Interp *interp, Tcl_Obj *objPtr, struct Nsf_Param const *pPtr,
int doCheckArguments,
unsigned int *flags, ClientData *clientData, Tcl_Obj **outObjPtr) {
int result;
assert(interp != NULL);
assert(objPtr != NULL);
assert(pPtr != NULL);
assert(flags != NULL);
assert(clientData != NULL);
assert(outObjPtr != NULL);
/*
* Default assumption: outObjPtr is not modified.
*/
*outObjPtr = objPtr;
/*
* Omit argument checking, provided that ...
* ... argument checking is turned off *and* no converter is specified, or
* ... the ruling parameter option is 'initcmd'
*/
if ((unlikely((doCheckArguments & NSF_ARGPARSE_CHECK) == 0)
&& (pPtr->flags & (NSF_ARG_IS_CONVERTER)) == 0
) || (pPtr->flags & (NSF_ARG_CMD))) {
/* fprintf(stderr, "*** omit argument check for arg %s flags %.6x\n", pPtr->name, pPtr->flags); */
*clientData = ObjStr(objPtr);
return TCL_OK;
}
/*
* If the argument is multivalued, perform the check for every element of
* the list (pure checker), or we have to build a new list of values (in
* case, the converter alters the values).
*/
if (unlikely(pPtr->flags & NSF_ARG_MULTIVALUED)) {
int objc, i;
Tcl_Obj **ov;
result = Tcl_ListObjGetElements(interp, objPtr, &objc, &ov);
if (unlikely(result != TCL_OK)) {
return result;
}
if (objc == 0 && ((pPtr->flags & NSF_ARG_ALLOW_EMPTY) == 0)) {
return NsfPrintError(interp,
"invalid value for parameter '%s': list is not allowed to be empty",
pPtr->name);
}
/*
* In cases where necessary (the output element changed), switch to the
* helper function
*/
for (i = 0; i < objc; i++) {
Tcl_Obj *elementObjPtr = ov[i];
result = (*pPtr->converter)(interp, elementObjPtr, pPtr, clientData, &elementObjPtr);
if (likely(result == TCL_OK || result == TCL_CONTINUE)) {
if (ov[i] != elementObjPtr) {
/*fprintf(stderr, "ArgumentCheck: switch to output list construction for value %s\n",
ObjStr(elementObjPtr));*/
/*
* The elementObjPtr differs from the input Tcl_Obj, we switch to
* the version of this handler building an output list. But first,
* we have to reset the ref-counts from the first conversion.
*/
ArgumentResetRefCounts(pPtr, elementObjPtr);
*flags |= NSF_PC_MUST_DECR;
result = ArgumentCheckHelper(interp, objPtr, pPtr, flags, clientData, outObjPtr);
break;
}
} else {
Tcl_Obj *resultObj = Tcl_GetObjResult(interp);
INCR_REF_COUNT(resultObj);
NsfPrintError(interp, "invalid value in \"%s\": %s", ObjStr(objPtr), ObjStr(resultObj));
DECR_REF_COUNT(resultObj);
break;
}
}
} else {
assert(objPtr == *outObjPtr);
if (pPtr->flags & NSF_ARG_ALLOW_EMPTY && *(ObjStr(objPtr)) == '\0') {
result = Nsf_ConvertToString(interp, objPtr, pPtr, clientData, outObjPtr);
} else {
result = (*pPtr->converter)(interp, objPtr, pPtr, clientData, outObjPtr);
}
/*fprintf(stderr, "ArgumentCheck param %s type %s is converter %d flags %.6x "
"outObj changed %d (%p %p) isok %d\n",
pPtr->name, pPtr->type, pPtr->flags & NSF_ARG_IS_CONVERTER, pPtr->flags,
objPtr != *outObjPtr, objPtr, *outObjPtr, result == TCL_OK);*/
if (unlikely(pPtr->flags & NSF_ARG_IS_CONVERTER) && objPtr != *outObjPtr) {
*flags |= NSF_PC_MUST_DECR;
} else {
/*
* If the output obj differs from the input obj, ensure we have
* MUST_DECR set.
*/
assert( *flags & NSF_PC_MUST_DECR || objPtr == *outObjPtr );
}
}
if (unlikely(result == TCL_CONTINUE)) {
*flags |= NSF_ARG_WARN;
result = TCL_OK;
}
return result;
}
/*
*----------------------------------------------------------------------
* ArgumentDefaults --
*
* Process the argument vector and set defaults in parse context if
* provided and necessary.
*
* Results:
* Standard Tcl result
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int ArgumentDefaults(ParseContext *pcPtr, Tcl_Interp *interp,
Nsf_Param const *ifd, int nrParams, int processFlags)
nonnull(1) nonnull(2) nonnull(3);
static int
ArgumentDefaults(ParseContext *pcPtr, Tcl_Interp *interp,
Nsf_Param const *ifd, int nrParams, int processFlags) {
Nsf_Param const *pPtr;
int i;
assert(pcPtr != NULL);
assert(interp != NULL);
assert(ifd != NULL);
for (pPtr = ifd, i = 0; i < nrParams; pPtr++, i++) {
/*fprintf(stderr, "ArgumentDefaults got for arg %s (req %d, nrArgs %d) %p => %p %p, default '%s' \n",
pPtr->name, pPtr->flags & NSF_ARG_REQUIRED, pPtr->nrArgs, pPtr,
pcPtr->clientData[i], pcPtr->objv[i], (pPtr->defaultValue != NULL) ? ObjStr(pPtr->defaultValue) : "NONE");*/
if (pcPtr->objv[i]) {
/*
* We got an actual value, which was already checked by ArgumentParse().
* In case the value is a switch and NSF_PC_INVERT_DEFAULT is set, we
* take the default and invert the value in place.
*/
if (unlikely(pcPtr->flags[i] & NSF_PC_INVERT_DEFAULT)) {
int bool;
Tcl_GetBooleanFromObj(interp, pPtr->defaultValue, &bool);
pcPtr->objv[i] = Tcl_NewBooleanObj(bool == 0);
/*
* Perform bookkeeping to avoid that someone releases the new obj
* before we are done. The according DECR is performed by
* ParseContextRelease()
*/
INCR_REF_COUNT2("valueObj", pcPtr->objv[i]);
pcPtr->flags[i] |= NSF_PC_MUST_DECR;
pcPtr->status |= NSF_PC_STATUS_MUST_DECR;
}
} else {
/*
* No valued was passed, check if a default is available.
*/
if (pPtr->defaultValue != NULL) {
int mustDecrNewValue;
Tcl_Obj *newValue = pPtr->defaultValue;
ClientData checkedData;
/*
* We have a default value for the argument. Mark that this argument
* gets the default value.
*/
pcPtr->flags[i] |= NSF_PC_IS_DEFAULT;
/* Is it necessary to substitute the default value? */
if (unlikely(pPtr->flags & NSF_ARG_SUBST_DEFAULT)) {
Tcl_Obj *obj = Tcl_SubstObj(interp, newValue, TCL_SUBST_ALL);
if (likely(obj != NULL)) {
newValue = obj;
} else {
pcPtr->flags[i] = 0;
return TCL_ERROR;
}
/* The matching DECR is performed by ParseContextRelease() */
INCR_REF_COUNT2("valueObj", newValue);
/*fprintf(stderr, "SUBST_DEFAULT increments %p refCount %d\n",
newValue,newValue->refCount);*/
mustDecrNewValue = 1;
pcPtr->flags[i] |= NSF_PC_MUST_DECR;
pcPtr->status |= NSF_PC_STATUS_MUST_DECR;
} else {
mustDecrNewValue = 0;
}
pcPtr->objv[i] = newValue;
/*fprintf(stderr, "==> setting default value '%s' for var '%s' flag %d type %s conv %p\n",
ObjStr(newValue), pPtr->name, pPtr->flags & NSF_ARG_INITCMD,
pPtr->type, pPtr->converter);*/
/*
* Check the default value if necessary
*/
if (pPtr->type || unlikely(pPtr->flags & NSF_ARG_MULTIVALUED)) {
unsigned int mustDecrList = 0;
if (unlikely((pPtr->flags & NSF_ARG_INITCMD) == 0 &&
ArgumentCheck(interp, newValue, pPtr,
RUNTIME_STATE(interp)->doCheckArguments,
&mustDecrList, &checkedData, &pcPtr->objv[i]) != TCL_OK)) {
if (mustDecrNewValue == 1) {
DECR_REF_COUNT2("valueObj", newValue);
pcPtr->flags[i] &= ~NSF_PC_MUST_DECR;
}
return TCL_ERROR;
}
if (unlikely(pcPtr->objv[i] != newValue)) {
/*
* The output Tcl_Obj differs from the input, so the
* Tcl_Obj was converted; in case we have set previously
* must_decr on newValue, we decr the refCount on newValue
* here and clear the flag.
*/
if (mustDecrNewValue == 1) {
DECR_REF_COUNT2("valueObj", newValue);
pcPtr->flags[i] &= ~NSF_PC_MUST_DECR;
}
/*
* The new output value itself might require a decr, so
* set the flag here if required; this is just necessary
* for multivalued converted output.
*/
if (mustDecrList == 1) {
pcPtr->flags[i] |= NSF_PC_MUST_DECR;
pcPtr->status |= NSF_PC_STATUS_MUST_DECR;
}
}
} else {
/*fprintf(stderr, "Param %s default %s type %s\n",
pPtr->name, ObjStr(pPtr->defaultValue), pPtr->type);*/
assert((pPtr->type != NULL) ? pPtr->defaultValue == NULL : 1);
}
} else if (unlikely(pPtr->flags & NSF_ARG_REQUIRED)
&& (processFlags & NSF_ARGPARSE_FORCE_REQUIRED)) {
Tcl_Obj *paramDefsObj = NsfParamDefsSyntax(interp, ifd, pcPtr->object, NULL);
Tcl_Obj *methodPathObj = NsfMethodNamePath(interp,
CallStackGetTclFrame(interp, NULL, 1),
MethodName(pcPtr->full_objv[0]));
INCR_REF_COUNT2("methodPathObj", methodPathObj);
NsfPrintError(interp, "required argument '%s' is missing, should be:\n\t%s%s%s %s", (pPtr->nameObj != NULL) ? ObjStr(pPtr->nameObj) : pPtr->name, (pcPtr->object != NULL) ? ObjectName(pcPtr->object) : "", (pcPtr->object != NULL) ? " " : "",
ObjStr(methodPathObj),
ObjStr(paramDefsObj));
DECR_REF_COUNT2("paramDefsObj", paramDefsObj);
DECR_REF_COUNT2("methodPathObj", methodPathObj);
return TCL_ERROR;
} else {
/*
* Use as dummy default value an arbitrary symbol, which must
* not be returned to the Tcl level level; this value is unset
* later typically by NsfUnsetUnknownArgsCmd().
*/
pcPtr->objv[i] = NsfGlobalObjs[NSF___UNKNOWN__];
}
}
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* ArgumentParse --
*
* Parse the argument vector based on the parameter definitions.
* The parsed argument vector is returned in a normalized order
* in the parse context.
*
* Results:
* Tcl return code.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int
Nsf_ArgumentParse(Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[],
Nsf_Object *object, Tcl_Obj *procNameObj,
Nsf_Param const *paramPtr, int nrParams, int serial,
unsigned int processFlags, Nsf_ParseContext *pcPtr) {
assert(interp != NULL);
assert(objv != NULL);
assert(procNameObj != NULL);
assert(pcPtr != NULL);
return ArgumentParse(interp, objc, objv, (NsfObject *)object, procNameObj,
paramPtr, nrParams, serial, processFlags,
(ParseContext *)pcPtr);
}
/*
*----------------------------------------------------------------------
* NextParam --
*
* Advance in the parameter definitions and return the next parameter.
*
* Results:
* Next parameter.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static Nsf_Param const * NextParam(Nsf_Param const *paramPtr, Nsf_Param const *lastParamPtr)
nonnull(1) nonnull(2) returns_nonnull;
static Nsf_Param const *
NextParam(Nsf_Param const *paramPtr, Nsf_Param const *lastParamPtr) {
assert(paramPtr != NULL);
assert(lastParamPtr != NULL);
for (; ++paramPtr <= lastParamPtr && *paramPtr->name == '-'; );
return paramPtr;
}
/*
*----------------------------------------------------------------------
* ArgumentParse --
*
* Parse the provided ist of argument against the given definition. The
* result is returned in the parameter context structure.
*
* Results:
* Standard Tcl result.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
#define SkipNonposParamDefs(cPtr) \
for (; ++(cPtr) <= lastParamPtr && *(cPtr)->name == '-';)
static int
ArgumentParse(Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[],
NsfObject *object, Tcl_Obj *procNameObj,
Nsf_Param const *paramPtr, int nrParams, int serial,
unsigned int processFlags, ParseContext *pcPtr) {
int o, dashdash = 0, j, fromArg;
Nsf_Param const *currentParamPtr = paramPtr;
Nsf_Param const *lastParamPtr = paramPtr + nrParams - 1;
assert(interp != NULL);
assert(objv != NULL);
assert(procNameObj != NULL);
assert(paramPtr != NULL);
assert(pcPtr != NULL);
if (processFlags & NSF_ARGPARSE_START_ZERO) {
fromArg = 0;
} else {
fromArg = 1;
}
ParseContextInit(pcPtr, nrParams, object, procNameObj);
#if defined(PARSE_TRACE)
{ Nsf_Param const *pPtr;
fprintf(stderr, "PARAMETER ");
for (o = 0, pPtr = paramPtr; pPtr->name; o++, pPtr++) {
fprintf(stderr, "[%d]%s (nrargs %d %s) ", o,
pPtr->name, pPtr->nrArgs,
pPtr->flags & NSF_ARG_REQUIRED ? "req" : "opt");
}
fprintf(stderr, "\n");
fprintf(stderr, "BEGIN (%d) [0]%s ", objc, ObjStr(procNameObj));
for (o = fromArg; o < objc; o++) {fprintf(stderr, "[%d]%s ", o, ObjStr(objv[o]));}
fprintf(stderr, "\n");
}
#endif
for (o = fromArg; o < objc; o++) {
Nsf_Param const *pPtr = currentParamPtr;
Tcl_Obj *argumentObj = objv[o];
Tcl_Obj *valueObj = NULL;
const char *valueInArgument = NULL;
#if defined(PARSE_TRACE_FULL)
fprintf(stderr, "arg [%d]: %s (param %ld, last %d)\n",
o, ObjStr(argumentObj), currentParamPtr - paramPtr, currentParamPtr == lastParamPtr);
#endif
if (unlikely(currentParamPtr > lastParamPtr)) {
Tcl_Obj *methodPathObj = NsfMethodNamePath(interp, CallStackGetTclFrame(interp, NULL, 0), NsfMethodName(procNameObj));
/*fprintf(stderr, "call NsfUnexpectedArgumentError 1\n");*/
return NsfUnexpectedArgumentError(interp, ObjStr(argumentObj), (Nsf_Object*)object,
paramPtr, methodPathObj);
}
if (*currentParamPtr->name == '-') {
/*
* We expect a nonpos arg. Check, if we a Tcl_Obj already converted to
* NsfFlagObjType.
*/
NsfFlag *flagPtr = argumentObj->internalRep.twoPtrValue.ptr1;
#if defined(PARSE_TRACE_FULL)
fprintf(stderr, "... arg %p %s expect nonpos arg in block %s isFlag %d sig %d serial %d (%d => %d)\n",
argumentObj, ObjStr(argumentObj), currentParamPtr->name,
argumentObj->typePtr == &NsfFlagObjType,
argumentObj->typePtr == &NsfFlagObjType ? flagPtr->signature == paramPtr : 0,
argumentObj->typePtr == &NsfFlagObjType ? flagPtr->serial == serial : 0,
argumentObj->typePtr == &NsfFlagObjType ? flagPtr->serial : 0,
serial );
#endif
if (argumentObj->typePtr == &NsfFlagObjType
&& flagPtr->signature == paramPtr
&& flagPtr->serial == serial
) {
/*
* The argument was processed before and the Tcl_Obj is still valid.
*/
if (flagPtr->flags & NSF_FLAG_DASHDAH) {
/*
* We got a dashDash, skip nonpos param definitions and continue with next
* element from objv.
*/
SkipNonposParamDefs(currentParamPtr);
assert(dashdash == 0);
continue;
} else if (flagPtr->flags & NSF_FLAG_CONTAINS_VALUE) {
/*
* We got a flag with an embedded value (e.g -flag=1).
*/
valueInArgument = "flag";
}
pPtr = flagPtr->paramPtr;
valueObj = flagPtr->payload;
} else {
const char *argumentString = ObjStr(argumentObj);
/*
* We are in a state, where we expect a non-positional argument, and
* the lookup from the Tcl_Obj has failed. If this non-pos args are
* optional, the current argument might contain also a value for a
* positional argument maybe the argument is for a posarg
* later). First check, if the argument looks like a flag.
*/
if (argumentString[0] != '-') {
/*
* The actual argument is not a flag, so proceed in the parameter
* vector to the next block (positional parameter)
*/
SkipNonposParamDefs(currentParamPtr);
pPtr = currentParamPtr;
/*
* currentParamPtr is either NULL or points to a positional parameter
*/
assert(currentParamPtr == NULL || currentParamPtr->name == NULL || *currentParamPtr->name != '-');
} else {
/*
* The actual argument starts with a dash, so search for the flag in
* the current block of nonpos parameter definitions
*/
char ch1 = *(argumentString+1);
/* Is there a "--" ? */
if (ch1 == '-' && *(argumentString+2) == '\0' && dashdash == 0) {
dashdash = 1;
NsfFlagObjSet(interp, argumentObj, paramPtr, serial,
NULL, NULL, NSF_FLAG_DASHDAH);
SkipNonposParamDefs(currentParamPtr);
continue;
}
valueInArgument = strchr(argumentString, '=');
if (valueInArgument != NULL) {
int found = 0, equalOffset = valueInArgument - argumentString;
/*
* Handle parameter like -flag=1
*/
for (; pPtr <= lastParamPtr && *pPtr->name == '-'; pPtr ++) {
if (pPtr->nrArgs > 0) {
/* parameter expects no arg, can't be this */
continue;
}
if ((pPtr->flags & NSF_ARG_NOCONFIG) == 0
&& ch1 == pPtr->name[1]
&& strncmp(argumentString, pPtr->name, equalOffset) == 0
&& *(pPtr->name+equalOffset) == '\0') {
valueObj = Tcl_NewStringObj(valueInArgument+1,-1);
/*fprintf(stderr, "... value from argument = %s\n", ObjStr(valueObj));*/
NsfFlagObjSet(interp, argumentObj, paramPtr, serial,
pPtr, valueObj, NSF_FLAG_CONTAINS_VALUE);
found = 1;
break;
}
}
if (found == 0) {
Nsf_Param const *nextParamPtr = NextParam(currentParamPtr, lastParamPtr);
if (nextParamPtr > lastParamPtr
|| (nextParamPtr->flags & NSF_ARG_NODASHALNUM)) {
Tcl_Obj *methodPathObj = NsfMethodNamePath(interp, CallStackGetTclFrame(interp, NULL, 0),
NsfMethodName(procNameObj));
return NsfUnexpectedNonposArgumentError(interp, argumentString,
(Nsf_Object *)object,
currentParamPtr, paramPtr,
methodPathObj);
}
pPtr = currentParamPtr = nextParamPtr;
}
} else {
/*
* Must be a classical nonpos arg; check for a matching parameter
* definition.
*/
int found = 0;
assert(pPtr == currentParamPtr);
if (ch1 != '\0') {
if (unlikely(NsfParamDefsNonposLookup(interp, argumentString, currentParamPtr, &pPtr) != TCL_OK)) {
return TCL_ERROR;
} else {
if (pPtr != NULL) {
found = 1;
NsfFlagObjSet(interp, argumentObj, paramPtr, serial, pPtr, NULL, 0);
}
}
}
/*
* We might have found the argument starting with the dash in the
* parameter definitions or not. If it was not found, then we can
* advance to the next positional parameter and stuff the value in
* there, if the parameter definition allows this.
*/
if (found == 0) {
int nonposArgError = 0;
Nsf_Param const *nextParamPtr = NextParam(currentParamPtr, lastParamPtr);
/*fprintf(stderr, "non-pos-arg '%s' not found, current %p %s last %p %s next %p %s\n",
argumentString,
currentParamPtr, currentParamPtr->name,
lastParamPtr, lastParamPtr->name,
nextParamPtr, nextParamPtr->name);*/
if (nextParamPtr > lastParamPtr) {
nonposArgError = 1;
} else if (nextParamPtr->flags & NSF_ARG_NODASHALNUM) {
/*
* Check if argment is numeric, since we want to allow it as
* value even when NSF_ARG_NODASHALNUM was specified.
*/
nonposArgError = 1;
if (argumentString[1] >= '0' && argumentString[1] <= '9') {
char *p;
(void)strtod(&argumentString[1], &p);
if (*p == '\0') {
/* argument is numeric */
nonposArgError = 0;
}
}
}
if (nonposArgError != 0) {
Tcl_Obj *methodPathObj = NsfMethodNamePath(interp,
CallStackGetTclFrame(interp, NULL, 0),
NsfMethodName(procNameObj));
return NsfUnexpectedNonposArgumentError(interp, argumentString,
(Nsf_Object *)object,
currentParamPtr, paramPtr,
methodPathObj);
}
pPtr = currentParamPtr = nextParamPtr;
}
}
}
/* end of lookup loop */
}
}
assert(pPtr != NULL);
/*
* pPtr points to the actual parameter (part of the currentParamPtr block)
* or might point to a place past the last parameter, in which case an
* unexpected argument was provided. o is the index of the actual
* parameter, valueObj might be already provided for valueInArgument.
*/
if (unlikely(pPtr > lastParamPtr)) {
Tcl_Obj *methodPathObj = NsfMethodNamePath(interp, CallStackGetTclFrame(interp, NULL, 0),
NsfMethodName(procNameObj));
/*fprintf(stderr, "call NsfUnexpectedArgumentError 2\n");*/
return NsfUnexpectedArgumentError(interp, ObjStr(argumentObj),
(Nsf_Object *)object, paramPtr,
methodPathObj);
}
/*
* Set the position in the downstream argv (normalized order)
*/
j = pPtr - paramPtr;
#if defined(PARSE_TRACE_FULL)
fprintf(stderr, "... pPtr->name %s/%d o %d objc %d\n", pPtr->name, pPtr->nrArgs, o, objc);
#endif
if (*pPtr->name == '-') {
/* process the nonpos arg */
if (pPtr->nrArgs == 1) {
/* The nonpos arg expects an argument */
o++;
if (unlikely(o >= objc)) {
/* we expect an argument, but we are already at the end of the argument list */
return NsfPrintError(interp, "value for parameter '%s' expected", pPtr->name);
}
assert(valueObj == NULL);
valueObj = objv[o];
} else {
/* The nonpos arg expects no argument */
if (valueObj == NULL) {
valueObj = NsfGlobalObjs[NSF_ONE];
}
}
} else if (unlikely(pPtr == lastParamPtr &&
pPtr->converter == ConvertToNothing)) {
/*
* "args" was given, use the varargs interface. Store the actual
* argument into pcPtr->objv. No checking is performed on "args".
*/
pcPtr->varArgs = 1;
pcPtr->objv[j] = argumentObj;
#if defined(PARSE_TRACE_FULL)
fprintf(stderr, "... args found o %d objc %d is dashdash %d [%d] <%s>\n", o, objc, dashdash, j, ObjStr(argumentObj));
#endif
break;
} else {
/*
* Process an ordinary positional argument.
*/
currentParamPtr ++;
#if defined(PARSE_TRACE_FULL)
fprintf(stderr, "... positional arg o %d objc %d, nrArgs %d next paramPtr %s\n",
o, objc, pPtr->nrArgs, currentParamPtr->name);
#endif
if (unlikely(pPtr->nrArgs == 0)) {
/*
* Allow positional arguments with 0 args for object parameter
* aliases, which are always fired. Such parameter are non-consuming,
* therefore the processing of the current argument is not finished, we
* have to decrement o. We have to check here if we are already at the
* end if the parameter vector.
*/
o--;
continue;
}
if (unlikely(dashdash)) {
/* reset dashdash */
dashdash = 0;
}
valueObj = argumentObj;
}
#if defined(PARSE_TRACE_FULL)
fprintf(stderr, "... setting parameter %s pos %d valueObj '%s'\n",
pPtr->name, j,
valueObj == argumentObj ? "=" : ObjStr(valueObj));
#endif
/*
* The value for the flag is now in the valueObj. We
* check, whether it is value is permissible.
*/
assert(valueObj != NULL);
if (unlikely(ArgumentCheck(interp, valueObj, pPtr, processFlags,
&pcPtr->flags[j],
&pcPtr->clientData[j],
&pcPtr->objv[j]) != TCL_OK)) {
if (pcPtr->flags[j] & NSF_PC_MUST_DECR) {pcPtr->status |= NSF_PC_STATUS_MUST_DECR;}
return TCL_ERROR;
}
/*
* Switches are more tricky: if the flag is provided without
* valueInArgument, we take the default and invert it. If valueInArgument
* was used, the default inversion must not happen.
*/
if (likely(valueInArgument == NULL)) {
if (unlikely(pPtr->converter == Nsf_ConvertToSwitch)) {
/*fprintf(stderr,"... set INVERT_DEFAULT for '%s' flags %.6x\n",
pPtr->name, pPtr->flags);*/
pcPtr->flags[j] |= NSF_PC_INVERT_DEFAULT;
}
}
/*fprintf(stderr, "... non-positional pcPtr %p check [%d] obj %p flags %.6x & %p\n",
pcPtr, j, pcPtr->objv[j], pcPtr->flags[j], &(pcPtr->flags[j])); */
/*
* Provide warnings for double-settings.
*/
if (unlikely(pcPtr->flags[j] & NSF_ARG_SET)) {
Tcl_Obj *cmdLineObj = Tcl_NewListObj(objc-1, objv+1);
INCR_REF_COUNT(cmdLineObj);
NsfLog(interp, NSF_LOG_WARN, "Non-positional parameter %s was passed more than once (%s%s%s %s)",
pPtr->name, (object != NULL) ? ObjectName(object) : "", (object != NULL) ? " method " : "",
ObjStr(procNameObj), ObjStr(cmdLineObj));
DECR_REF_COUNT(cmdLineObj);
}
pcPtr->flags[j] |= NSF_ARG_SET;
/*
* Embed error message of converter in current context.
*/
if (unlikely(pcPtr->flags[j] & NSF_ARG_WARN)) {
Tcl_Obj *resultObj = Tcl_GetObjResult(interp);
Tcl_DString ds, *dsPtr = &ds;
Tcl_DStringInit(dsPtr);
INCR_REF_COUNT(resultObj);
NsfDStringArgv(dsPtr, objc, objv);
NsfLog(interp, NSF_LOG_WARN, "%s during:\n%s %s",
ObjStr(resultObj), (object != NULL) ? ObjectName(object) : "nsf::proc", Tcl_DStringValue(dsPtr));
DECR_REF_COUNT(resultObj);
Tcl_DStringFree(dsPtr);
}
if (unlikely(pcPtr->flags[j] & NSF_PC_MUST_DECR)) {
pcPtr->status |= NSF_PC_STATUS_MUST_DECR;
}
assert(pcPtr->varArgs == 0);
#if defined(PARSE_TRACE_FULL)
fprintf(stderr, "... iterate on o %d objc %d, currentParamPtr %s\n",
o, objc, currentParamPtr->name);
#endif
}
if (currentParamPtr <= lastParamPtr && pcPtr->varArgs == 0) {
/* not all parameter processed, make sure varags is set */
/*fprintf(stderr, ".... not all parms processed, pPtr '%s' j %ld nrParams %d last '%s' varArgs %d dashdash %d\n",
currentParamPtr->name, currentParamPtr - paramPtr, nrParams, lastParamPtr->name,
pcPtr->varArgs, dashdash);*/
if (lastParamPtr->converter == ConvertToNothing) {
pcPtr->varArgs = 1;
}
}
/*
* Set lastObjc as index of the first "unprocessed" parameter.
*/
pcPtr->lastObjc = o;
pcPtr->objc = nrParams;
assert(ISOBJ(objv[pcPtr->lastObjc-1]));
#if defined(PARSE_TRACE_FULL)
fprintf(stderr, "..... argv processed o %d lastObjc %d nrParams %d olastObjc, nrParams, ovarArgs);
#endif
return ArgumentDefaults(pcPtr, interp, paramPtr, nrParams, processFlags);
}
/***********************************
* Begin result setting commands
* (essentially List*() and support
***********************************/
/*
*----------------------------------------------------------------------
* ListVarKeys --
*
* Return variable names of the provided hash table in the interp
* result. Optionally "pattern" might be used to filter the result list.
*
* Results:
* Standard Tcl result
*
* Side effects:
* Modifies interp result
*
*----------------------------------------------------------------------
*/
static int ListVarKeys(Tcl_Interp *interp, Tcl_HashTable *tablePtr, const char *pattern)
nonnull(1);
static int
ListVarKeys(Tcl_Interp *interp, Tcl_HashTable *tablePtr, const char *pattern) {
Tcl_HashEntry *hPtr;
assert(interp != NULL);
if (pattern && NoMetaChars(pattern)) {
Tcl_Obj *patternObj = Tcl_NewStringObj(pattern, -1);
INCR_REF_COUNT(patternObj);
hPtr = (tablePtr != NULL) ? Tcl_CreateHashEntry(tablePtr, (char *)patternObj, NULL) : NULL;
if (hPtr != NULL) {
Var *val = TclVarHashGetValue(hPtr);
Tcl_SetObjResult(interp, TclVarHashGetKey(val));
} else {
Tcl_SetObjResult(interp, NsfGlobalObjs[NSF_EMPTY]);
}
DECR_REF_COUNT(patternObj);
} else {
Tcl_Obj *list = Tcl_NewListObj(0, NULL);
Tcl_HashSearch hSrch;
hPtr = (tablePtr != NULL) ? Tcl_FirstHashEntry(tablePtr, &hSrch) : NULL;
for (; hPtr; hPtr = Tcl_NextHashEntry(&hSrch)) {
Var *val = TclVarHashGetValue(hPtr);
Tcl_Obj *key = TclVarHashGetKey(val);
if (pattern == NULL || Tcl_StringMatch(ObjStr(key), pattern)) {
Tcl_ListObjAppendElement(interp, list, key);
}
}
Tcl_SetObjResult(interp, list);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* GetOriginalCommand --
*
* Obtain for an imported/aliased cmd the original definition.
*
* Results:
* Tcl command
*
* Side effects:
* none
*
*----------------------------------------------------------------------
*/
static Tcl_Command
GetOriginalCommand(Tcl_Command cmd) /* The imported command for which the original
* command should be returned.
*/
{
Tcl_Command importedCmd;
assert(cmd != NULL);
while (1) {
/* dereference the namespace import reference chain */
if ((importedCmd = TclGetOriginalCommand(cmd))) {
cmd = importedCmd;
}
/* dereference the Next Scripting alias chain */
if (Tcl_Command_deleteProc(cmd) == AliasCmdDeleteProc) {
AliasCmdClientData *tcd = (AliasCmdClientData *)Tcl_Command_objClientData(cmd);
cmd = tcd->aliasedCmd;
continue;
}
break;
}
return cmd;
}
/*
*----------------------------------------------------------------------
* ListProcBody --
*
* Return the body of a scripted proc as tcl interp result.
*
* Results:
* Standard Tcl result
*
* Side effects:
* Modifies interp result
*
*----------------------------------------------------------------------
*/
static int ListProcBody(Tcl_Interp *interp, Proc *procPtr, const char *methodName)
nonnull(1) nonnull(2) nonnull(3);
static int
ListProcBody(Tcl_Interp *interp, Proc *procPtr, const char *methodName) {
const char *body;
assert(interp != NULL);
assert(procPtr != NULL);
assert(methodName != NULL);
body = ObjStr(procPtr->bodyPtr);
Tcl_SetObjResult(interp, Tcl_NewStringObj(StripBodyPrefix(body), -1));
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* ListParamDefs --
*
* Compute the parameter definition in one of four different forms.
*
* Results:
* Standard Tcl result
*
* Side effects:
* Modifies interp result
*
*----------------------------------------------------------------------
*/
static Tcl_Obj *ListParamDefs(Tcl_Interp *interp, Nsf_Param const *paramsPtr,
NsfObject *contextObject, const char *pattern, NsfParamsPrintStyle style)
nonnull(1) nonnull(2) returns_nonnull;
static Tcl_Obj *
ListParamDefs(Tcl_Interp *interp, Nsf_Param const *paramsPtr,
NsfObject *contextObject, const char *pattern,
NsfParamsPrintStyle style) {
Tcl_Obj *listObj;
assert(interp != NULL);
assert(paramsPtr != NULL);
switch (style) {
case NSF_PARAMS_PARAMETER: listObj = ParamDefsFormat(interp, paramsPtr, contextObject, pattern); break;
case NSF_PARAMS_LIST: listObj = ParamDefsList(interp, paramsPtr, contextObject, pattern); break;
case NSF_PARAMS_NAMES: listObj = ParamDefsNames(interp, paramsPtr, contextObject, pattern); break;
default: /* NSF_PARAMS_SYNTAX:*/ listObj = NsfParamDefsSyntax(interp, paramsPtr, contextObject, pattern); break;
}
return listObj;
}
/*
*----------------------------------------------------------------------
* ListCmdParams --
*
* Obtains a cmd and a method name. As a side effect, sets the Tcl interp
* result to a list of parameter definitions, if available. The print-style
* NSF_PARAMS_NAMES, NSF_PARAMS_LIST, NSF_PARAMS_PARAMETER,
* NSF_PARAMS_SYNTAX controls the list content.
*
* Results:
* Tcl result code
*
* Side effects:
* Sets interp result
*
*----------------------------------------------------------------------
*/
static int ListCmdParams(Tcl_Interp *interp, Tcl_Command cmd, NsfObject *contextObject,
const char *pattern, const char *methodName, NsfParamsPrintStyle printStyle)
nonnull(1) nonnull(2) nonnull(5);
static int
ListCmdParams(Tcl_Interp *interp, Tcl_Command cmd, NsfObject *contextObject,
const char *pattern, const char *methodName, NsfParamsPrintStyle printStyle) {
NsfParamDefs *paramDefs;
Tcl_Obj *listObj;
Proc *procPtr;
assert(interp != NULL);
assert(methodName != NULL);
assert(cmd != NULL);
paramDefs = ParamDefsGet(cmd, NULL);
if (paramDefs && paramDefs->paramsPtr) {
/*
* Obtain parameter info from paramDefs.
*/
listObj = ListParamDefs(interp, paramDefs->paramsPtr, contextObject, pattern, printStyle);
Tcl_SetObjResult(interp, listObj);
DECR_REF_COUNT2("paramDefsObj", listObj);
return TCL_OK;
}
procPtr = GetTclProcFromCommand(cmd);
if (procPtr != NULL) {
/*
* Obtain parameter info from compiled locals.
*/
CompiledLocal *args = procPtr->firstLocalPtr;
listObj = Tcl_NewListObj(0, NULL);
for ( ; args; args = args->nextPtr) {
if (!TclIsCompiledLocalArgument(args)) {
continue;
}
if (pattern && !Tcl_StringMatch(args->name, pattern)) continue;
if (printStyle == NSF_PARAMS_SYNTAX && strcmp(args->name, "args") == 0) {
if (args != procPtr->firstLocalPtr) {
Tcl_AppendToObj(listObj, " ", 1);
}
Tcl_AppendToObj(listObj, "?/arg .../?", 11);
} else {
if (printStyle == NSF_PARAMS_SYNTAX) {
/*
* A default means that the argument is optional.
*/
if (args->defValuePtr != NULL) {
Tcl_AppendToObj(listObj, "?", 1);
Tcl_AppendToObj(listObj, args->name, -1);
Tcl_AppendToObj(listObj, "?", 1);
} else {
Tcl_AppendToObj(listObj, "/", 1);
Tcl_AppendToObj(listObj, args->name, -1);
Tcl_AppendToObj(listObj, "/", 1);
}
if (args->nextPtr != NULL) {
Tcl_AppendToObj(listObj, " ", 1);
}
} else {
Tcl_Obj *innerListObj = Tcl_NewListObj(0, NULL);
Tcl_ListObjAppendElement(interp, innerListObj, Tcl_NewStringObj(args->name, -1));
/*
* Return default just for NSF_PARAMS_PARAMETER.
*/
if (args->defValuePtr && printStyle == NSF_PARAMS_PARAMETER) {
Tcl_ListObjAppendElement(interp, innerListObj, args->defValuePtr);
}
Tcl_ListObjAppendElement(interp, listObj, innerListObj);
}
}
}
Tcl_SetObjResult(interp, listObj);
return TCL_OK;
}
{
/*
* If a command is not found for the object|class, check whether we
* find the parameter definitions for the C-defined method.
*/
Nsf_methodDefinition *mdPtr = Nsf_CmdDefinitionGet(((Command *)cmd)->objProc);
if (mdPtr != NULL) {
NsfParamDefs paramDefs = {mdPtr->paramDefs, mdPtr->nrParameters, 1, 0, NULL};
Tcl_Obj *list = ListParamDefs(interp, paramDefs.paramsPtr, contextObject, pattern, printStyle);
Tcl_SetObjResult(interp, list);
DECR_REF_COUNT2("paramDefsObj", list);
return TCL_OK;
}
}
if (((Command *)cmd)->objProc == NsfSetterMethod) {
SetterCmdClientData *cd = (SetterCmdClientData *)Tcl_Command_objClientData(cmd);
if (cd && cd->paramsPtr) {
Tcl_Obj *list;
NsfParamDefs paramDefs;
paramDefs.paramsPtr = cd->paramsPtr;
paramDefs.nrParams = 1;
list = ListParamDefs(interp, paramDefs.paramsPtr, contextObject, pattern, printStyle);
Tcl_SetObjResult(interp, list);
DECR_REF_COUNT2("paramDefsObj", list);
return TCL_OK;
} else {
Tcl_SetObjResult(interp, Tcl_NewStringObj(methodName, -1));
return TCL_OK;
}
}
/*
* In case, we failed so far to obtain a result, try to use the
* object-system implementors definitions in the global array
* ::nsf::parametersyntax. Note that we can only obtain the
* parameter syntax this way.
*/
if (printStyle == NSF_PARAMS_SYNTAX) {
Tcl_DString ds, *dsPtr = &ds;
Tcl_Obj *parameterSyntaxObj;
Tcl_DStringInit(dsPtr);
DStringAppendQualName(dsPtr, Tcl_Command_nsPtr(cmd), methodName);
/*fprintf(stderr,"Looking up ::nsf::parametersyntax(%s) ...\n", Tcl_DStringValue(dsPtr));*/
parameterSyntaxObj = Tcl_GetVar2Ex(interp, NsfGlobalStrings[NSF_ARRAY_PARAMETERSYNTAX],
Tcl_DStringValue(dsPtr), TCL_GLOBAL_ONLY);
/*fprintf(stderr, "No parametersyntax so far methodName %s cmd name %s ns %s\n",
methodName, Tcl_GetCommandName(interp, cmd), Tcl_DStringValue(dsPtr));*/
Tcl_DStringFree(dsPtr);
if (parameterSyntaxObj != NULL) {
Tcl_SetObjResult(interp, parameterSyntaxObj);
return TCL_OK;
}
}
if (Tcl_Command_objProc(cmd) == NsfForwardMethod) {
return NsfPrintError(interp, "could not obtain parameter definition for forwarder '%s'",
methodName);
} else if (CmdIsNsfObject(cmd)) {
/* procPtr == NsfObjDispatch:
reached for:
... ensemble objects
... plain objects
*/
return TCL_OK;
} else {
/* reached e.g. for C-implemented Tcl command procs */
return NsfPrintError(interp, "could not obtain parameter definition for method '%s'",
methodName);
}
}
/*
*----------------------------------------------------------------------
* AppendForwardDefinition --
*
* Append the parameters of a forward definition to the specified listObj.
*
* Results:
* None.
*
* Side effects:
* Appending to listObj
*
*----------------------------------------------------------------------
*/
static void AppendForwardDefinition(Tcl_Interp *interp, Tcl_Obj *listObj, ForwardCmdClientData *tcd)
nonnull(1) nonnull(2) nonnull(3);
static void
AppendForwardDefinition(Tcl_Interp *interp, Tcl_Obj *listObj, ForwardCmdClientData *tcd) {
assert(interp != NULL);
assert(listObj != NULL);
assert(tcd != NULL);
if (tcd->prefix != NULL) {
Tcl_ListObjAppendElement(interp, listObj, Tcl_NewStringObj("-prefix", -1));
Tcl_ListObjAppendElement(interp, listObj, tcd->prefix);
}
if (tcd->subcommands != NULL) {
Tcl_ListObjAppendElement(interp, listObj, Tcl_NewStringObj("-default", -1));
Tcl_ListObjAppendElement(interp, listObj, tcd->subcommands);
}
if (tcd->objProc != NULL) {
Tcl_ListObjAppendElement(interp, listObj, Tcl_NewStringObj("-earlybinding", -1));
}
if (tcd->frame == FrameObjectIdx) {
Tcl_ListObjAppendElement(interp, listObj, Tcl_NewStringObj("-frame", 6));
Tcl_ListObjAppendElement(interp, listObj, Tcl_NewStringObj("object", 6));
}
Tcl_ListObjAppendElement(interp, listObj, tcd->cmdName);
if (tcd->args != NULL) {
Tcl_Obj **args;
int nrArgs, i;
Tcl_ListObjGetElements(interp, tcd->args, &nrArgs, &args);
for (i = 0; i < nrArgs; i++) {
Tcl_ListObjAppendElement(interp, listObj, args[i]);
}
}
}
/*
*----------------------------------------------------------------------
* AppendMethodRegistration --
*
* Append to the listObj the command words needed for defintion /
* registration.
*
* Results:
* None.
*
* Side effects:
* Appending to listObj
*
*----------------------------------------------------------------------
*/
static void AppendMethodRegistration(Tcl_Interp *interp, Tcl_Obj *listObj, const char *registerCmdName,
NsfObject *object, const char *methodName, Tcl_Command cmd,
int withObjFrame, int withPer_object, int withProtection)
nonnull(1) nonnull(2) nonnull(3) nonnull(4) nonnull(5) nonnull(6);
static void
AppendMethodRegistration(Tcl_Interp *interp, Tcl_Obj *listObj, const char *registerCmdName,
NsfObject *object, const char *methodName, Tcl_Command cmd,
int withObjFrame, int withPer_object, int withProtection) {
assert(interp != NULL);
assert(listObj != NULL);
assert(registerCmdName != NULL);
assert(object != NULL);
assert(methodName != NULL);
assert(cmd != NULL);
Tcl_ListObjAppendElement(interp, listObj, object->cmdName);
if (withProtection != 0) {
Tcl_ListObjAppendElement(interp, listObj,
((Tcl_Command_flags(cmd) & NSF_CMD_CALL_PRIVATE_METHOD) != 0)
? Tcl_NewStringObj("private", 7)
: ((Tcl_Command_flags(cmd) & NSF_CMD_CALL_PROTECTED_METHOD) != 0)
? Tcl_NewStringObj("protected", 9)
: Tcl_NewStringObj("public", 6));
}
if (!NsfObjectIsClass(object) || withPer_object) {
Tcl_ListObjAppendElement(interp, listObj, Tcl_NewStringObj("object", 6));
}
Tcl_ListObjAppendElement(interp, listObj, Tcl_NewStringObj(registerCmdName, -1));
Tcl_ListObjAppendElement(interp, listObj, Tcl_NewStringObj(methodName, -1));
if (withObjFrame != 0) {
Tcl_ListObjAppendElement(interp, listObj, Tcl_NewStringObj("-frame", 6));
Tcl_ListObjAppendElement(interp, listObj, Tcl_NewStringObj("object", 6));
}
if (Tcl_Command_flags(cmd) & NSF_CMD_NONLEAF_METHOD) {
Tcl_ListObjAppendElement(interp, listObj, Tcl_NewStringObj("-frame", 6));
Tcl_ListObjAppendElement(interp, listObj, Tcl_NewStringObj("method", 6));
}
}
/*
*----------------------------------------------------------------------
* AppendReturnsClause --
*
* Append to the listObj a returns clause, if it was spefified for the
* current cmd.
*
* Results:
* None.
*
* Side effects:
* Appending to listObj
*
*----------------------------------------------------------------------
*/
static void AppendReturnsClause(Tcl_Interp *interp, Tcl_Obj *listObj, Tcl_Command cmd)
nonnull(1) nonnull(2) nonnull(3);
static void
AppendReturnsClause(Tcl_Interp *interp, Tcl_Obj *listObj, Tcl_Command cmd) {
NsfParamDefs *paramDefs;
assert(interp != NULL);
assert(listObj != NULL);
assert(cmd != NULL);
paramDefs = ParamDefsGet(cmd, NULL);
if (paramDefs && paramDefs->returns) {
/* TODO: avoid hard-coding the script-level/NX-specific keyword "returns" */
Tcl_ListObjAppendElement(interp, listObj, Tcl_NewStringObj("-returns", -1));
Tcl_ListObjAppendElement(interp, listObj, paramDefs->returns);
}
}
/*
*----------------------------------------------------------------------
* ListMethod --
*
* Constuct a command to regenerate the specified method. The method might
* be scripted or not (alias, forwarder, ...). The command is returned in
* the interp result.
*
* Results:
* Tcl result code.
*
* Side effects:
* Sets interp result
*
*----------------------------------------------------------------------
*/
static int ListMethod(Tcl_Interp *interp,
NsfObject *regObject,
NsfObject *defObject,
const char *methodName,
Tcl_Command cmd,
int subcmd,
NsfObject *contextObject,
const char *pattern,
int withPer_object)
nonnull(1) nonnull(4) nonnull(5);
static int
ListMethod(Tcl_Interp *interp,
NsfObject *regObject,
NsfObject *defObject,
const char *methodName,
Tcl_Command cmd,
int subcmd,
NsfObject *contextObject,
const char *pattern,
int withPer_object) {
Tcl_ObjCmdProc *procPtr;
int outputPerObject;
Tcl_Obj *resultObj;
assert(interp != NULL);
assert(methodName != NULL);
assert(*methodName != ':');
assert(cmd != NULL);
Tcl_ResetResult(interp);
if (regObject != NULL && !NsfObjectIsClass(regObject)) {
withPer_object = 1;
/* don't output "object" modifier, if regObject is not a class */
outputPerObject = 0;
} else {
outputPerObject = withPer_object;
}
procPtr = Tcl_Command_objProc(cmd);
switch (subcmd) {
case InfomethodsubcmdRegistrationhandleIdx:
{
if (regObject != NULL) {
Tcl_SetObjResult(interp, MethodHandleObj(regObject, withPer_object, methodName));
}
return TCL_OK;
}
case InfomethodsubcmdDefinitionhandleIdx:
{
if (defObject != NULL) {
Tcl_SetObjResult(interp, MethodHandleObj(defObject,
NsfObjectIsClass(defObject) ? withPer_object : 1,
Tcl_GetCommandName(interp, cmd)));
}
return TCL_OK;
}
case InfomethodsubcmdExistsIdx:
{
Tcl_SetObjResult(interp, Tcl_NewIntObj(CmdIsNsfObject(cmd) == 0));
return TCL_OK;
}
case InfomethodsubcmdArgsIdx:
{
Tcl_Command importedCmd = GetOriginalCommand(cmd);
return ListCmdParams(interp, importedCmd, contextObject, pattern, methodName, NSF_PARAMS_NAMES);
}
case InfomethodsubcmdParameterIdx:
{
Tcl_Command importedCmd = GetOriginalCommand(cmd);
return ListCmdParams(interp, importedCmd, contextObject, pattern, methodName, NSF_PARAMS_PARAMETER);
}
case InfomethodsubcmdReturnsIdx:
{
Tcl_Command importedCmd;
NsfParamDefs *paramDefs;
importedCmd = GetOriginalCommand(cmd);
paramDefs = ParamDefsGet(importedCmd, NULL);
if (paramDefs && paramDefs->returns) {
Tcl_SetObjResult(interp, paramDefs->returns);
}
return TCL_OK;
}
case InfomethodsubcmdSyntaxIdx:
{
Tcl_Command importedCmd = GetOriginalCommand(cmd);
return ListCmdParams(interp, importedCmd, contextObject, pattern, methodName, NSF_PARAMS_SYNTAX);
}
case InfomethodsubcmdPreconditionIdx:
#if defined(NSF_WITH_ASSERTIONS)
if (regObject != NULL) {
NsfProcAssertion *procs = NULL;
if (withPer_object == 1) {
if (regObject->opt && regObject->opt->assertions) {
procs = AssertionFindProcs(regObject->opt->assertions, methodName);
}
} else {
NsfClass *class = (NsfClass *)regObject;
if (class->opt && class->opt->assertions) {
procs = AssertionFindProcs(class->opt->assertions, methodName);
}
}
if (procs != NULL) Tcl_SetObjResult(interp, AssertionList(interp, procs->pre));
}
#endif
return TCL_OK;
case InfomethodsubcmdPostconditionIdx:
#if defined(NSF_WITH_ASSERTIONS)
if (regObject != NULL) {
NsfProcAssertion *procs = NULL;
if (withPer_object == 1) {
if (regObject->opt && regObject->opt->assertions) {
procs = AssertionFindProcs(regObject->opt->assertions, methodName);
}
} else {
NsfClass *class = (NsfClass *)regObject;
if (class->opt && class->opt->assertions) {
procs = AssertionFindProcs(class->opt->assertions, methodName);
}
}
if (procs != NULL) Tcl_SetObjResult(interp, AssertionList(interp, procs->post));
}
#endif
return TCL_OK;
case InfomethodsubcmdSubmethodsIdx:
{
Tcl_Command origCmd = GetOriginalCommand(cmd);
if (CmdIsNsfObject(origCmd)) {
NsfObject *subObject = NsfGetObjectFromCmdPtr(origCmd);
if (subObject != NULL) {
return ListDefinedMethods(interp, subObject, NULL, 1 /* per-object */,
NSF_METHODTYPE_ALL, CallprotectionAllIdx, 0);
}
}
/* all other cases return empty */
Tcl_SetObjResult(interp, NsfGlobalObjs[NSF_EMPTY]);
return TCL_OK;
}
}
/*
* The subcommands differ per type of method. The converter in
* InfoMethods defines the types:
*
* all|scripted|builtin|alias|forwarder|object|setter|nsfproc
*/
if (GetTclProcFromCommand(cmd)) {
/* a scripted method */
switch (subcmd) {
case InfomethodsubcmdTypeIdx:
if (regObject != NULL) {
Tcl_SetObjResult(interp, Tcl_NewStringObj("scripted", -1));
} else {
Tcl_SetObjResult(interp, Tcl_NewStringObj("proc", -1));
}
break;
case InfomethodsubcmdBodyIdx:
ListProcBody(interp, GetTclProcFromCommand(cmd), methodName);
break;
case InfomethodsubcmdDefinitionIdx:
{
resultObj = Tcl_NewListObj(0, NULL);
/* todo: don't hard-code registering command name "method" / NSF_METHOD */
if (regObject != NULL) {
AppendMethodRegistration(interp, resultObj, NsfGlobalStrings[NSF_METHOD],
regObject, methodName, cmd, 0, outputPerObject, 1);
} else {
Tcl_ListObjAppendElement(interp, resultObj, Tcl_NewStringObj("::proc", -1));
Tcl_ListObjAppendElement(interp, resultObj, Tcl_NewStringObj(methodName,-1));
}
ListCmdParams(interp, cmd, contextObject, NULL, methodName, NSF_PARAMS_PARAMETER);
Tcl_ListObjAppendElement(interp, resultObj, Tcl_GetObjResult(interp));
AppendReturnsClause(interp, resultObj, cmd);
ListProcBody(interp, GetTclProcFromCommand(cmd), methodName);
Tcl_ListObjAppendElement(interp, resultObj, Tcl_GetObjResult(interp));
#if defined(NSF_WITH_ASSERTIONS)
if (regObject != NULL) {
NsfAssertionStore *assertions;
if (withPer_object == 1) {
assertions = (regObject->opt != NULL) ? regObject->opt->assertions : NULL;
} else {
NsfClass *class = (NsfClass *)regObject;
assertions = (class->opt != NULL) ? class->opt->assertions : NULL;
}
if (assertions != NULL) {
NsfProcAssertion *procs = AssertionFindProcs(assertions, methodName);
if (procs != NULL) {
Tcl_ListObjAppendElement(interp, resultObj, Tcl_NewStringObj("-precondition", -1));
Tcl_ListObjAppendElement(interp, resultObj, AssertionList(interp, procs->pre));
Tcl_ListObjAppendElement(interp, resultObj, Tcl_NewStringObj("-postcondition", -1));
Tcl_ListObjAppendElement(interp, resultObj, AssertionList(interp, procs->post));
}
}
}
#endif
Tcl_SetObjResult(interp, resultObj);
break;
}
}
} else if (procPtr == NsfForwardMethod) {
/* forwarder */
switch (subcmd) {
case InfomethodsubcmdTypeIdx:
Tcl_SetObjResult(interp, NsfGlobalObjs[NSF_FORWARD]);
break;
case InfomethodsubcmdDefinitionIdx:
if (regObject != NULL) {
ClientData clientData;
assert(cmd != NULL);
clientData = Tcl_Command_objClientData(cmd);
if (clientData != NULL) {
resultObj = Tcl_NewListObj(0, NULL);
/* todo: don't hard-code registering command name "forward" / NSF_FORWARD*/
AppendMethodRegistration(interp, resultObj, NsfGlobalStrings[NSF_FORWARD],
regObject, methodName, cmd, 0, outputPerObject, 1);
AppendReturnsClause(interp, resultObj, cmd);
AppendForwardDefinition(interp, resultObj, clientData);
Tcl_SetObjResult(interp, resultObj);
}
}
break;
}
} else if (procPtr == NsfSetterMethod) {
/* setter methods */
switch (subcmd) {
case InfomethodsubcmdTypeIdx:
Tcl_SetObjResult(interp, NsfGlobalObjs[NSF_SETTER]);
break;
case InfomethodsubcmdDefinitionIdx:
if (regObject != NULL) {
SetterCmdClientData *cd = (SetterCmdClientData *)Tcl_Command_objClientData(cmd);
resultObj = Tcl_NewListObj(0, NULL);
/* todo: don't hard-code registering command name "setter" / NSF_SETTER */
AppendMethodRegistration(interp, resultObj, NsfGlobalStrings[NSF_SETTER], regObject,
(cd && cd->paramsPtr) ? ObjStr(cd->paramsPtr->paramObj) : methodName,
cmd, 0, outputPerObject, 1);
Tcl_SetObjResult(interp, resultObj);
}
break;
}
} else if (procPtr == NsfProcStub) {
/*
* Special nsfproc handling:
*/
NsfProcClientData *tcd = Tcl_Command_objClientData(cmd);
if (tcd && tcd->procName) {
Tcl_Command procCmd = Tcl_GetCommandFromObj(interp, tcd->procName);
Tcl_DString ds, *dsPtr = &ds;
Tcl_Obj *resultObj;
switch (subcmd) {
case InfomethodsubcmdTypeIdx:
Tcl_SetObjResult(interp, Tcl_NewStringObj("nsfproc", -1));
break;
case InfomethodsubcmdBodyIdx:
ListProcBody(interp, GetTclProcFromCommand(procCmd), methodName);
break;
case InfomethodsubcmdDefinitionIdx:
resultObj = Tcl_NewListObj(0, NULL);
Tcl_DStringInit(dsPtr);
DStringAppendQualName(dsPtr, Tcl_Command_nsPtr(cmd), methodName);
/* don't hardcode names */
Tcl_ListObjAppendElement(interp, resultObj, Tcl_NewStringObj("::nsf::proc", -1));
if (tcd->with_ad != 0) {
Tcl_ListObjAppendElement(interp, resultObj, Tcl_NewStringObj("-ad", 3));
}
Tcl_ListObjAppendElement(interp, resultObj,
Tcl_NewStringObj(Tcl_DStringValue(dsPtr),
Tcl_DStringLength(dsPtr)));
ListCmdParams(interp, cmd, NULL, NULL, Tcl_DStringValue(dsPtr), NSF_PARAMS_PARAMETER);
Tcl_ListObjAppendElement(interp, resultObj, Tcl_GetObjResult(interp));
ListProcBody(interp, GetTclProcFromCommand(procCmd), methodName);
Tcl_ListObjAppendElement(interp, resultObj, Tcl_GetObjResult(interp));
Tcl_SetObjResult(interp, resultObj);
Tcl_DStringFree(dsPtr);
break;
}
}
} else if (defObject != NULL) {
/*
* The cmd must be an alias or object.
*
* Note that some aliases come with procPtr == NsfObjDispatch.
* In order to distinguish between "object" and alias, we have
* to do the lookup for the entryObj to determine wether it is
* really an alias.
*/
Tcl_Obj *entryObj;
entryObj = AliasGet(interp, defObject->cmdName,
Tcl_GetCommandName(interp, cmd),
regObject != defObject ? 1 : withPer_object, 0);
/*
fprintf(stderr, "aliasGet %s -> %s/%s (%d) returned %p\n",
ObjectName(defObject), methodName, Tcl_GetCommandName(interp, cmd),
withPer_object, entryObj);
fprintf(stderr, "... regObject %p %s\n", regObject, ObjectName(regObject));
fprintf(stderr, "... defObject %p %s\n", defObject, ObjectName(defObject));
*/
if (entryObj != NULL) {
/* is an alias */
switch (subcmd) {
case InfomethodsubcmdTypeIdx:
Tcl_SetObjResult(interp, NsfGlobalObjs[NSF_ALIAS]);
break;
case InfomethodsubcmdDefinitionIdx:
if (regObject != NULL) {
int nrElements;
Tcl_Obj **listElements;
resultObj = Tcl_NewListObj(0, NULL);
Tcl_ListObjGetElements(interp, entryObj, &nrElements, &listElements);
/* todo: don't hard-code registering command name "alias" / NSF_ALIAS */
AppendMethodRegistration(interp, resultObj, NsfGlobalStrings[NSF_ALIAS],
regObject, methodName, cmd,
procPtr == NsfObjscopedMethod,
outputPerObject, 1);
AppendReturnsClause(interp, resultObj, cmd);
Tcl_ListObjAppendElement(interp, resultObj, listElements[nrElements-1]);
Tcl_SetObjResult(interp, resultObj);
}
break;
case InfomethodsubcmdOriginIdx:
{
int nrElements;
Tcl_Obj **listElements;
Tcl_ListObjGetElements(interp, entryObj, &nrElements, &listElements);
Tcl_SetObjResult(interp, listElements[nrElements-1]);
break;
}
}
} else {
/* check, to be on the safe side */
if (CmdIsNsfObject(cmd)) {
/* the command is an object */
switch (subcmd) {
case InfomethodsubcmdTypeIdx:
Tcl_SetObjResult(interp, Tcl_NewStringObj("object", -1));
break;
case InfomethodsubcmdDefinitionIdx:
{
NsfObject *subObject = NsfGetObjectFromCmdPtr(cmd);
assert(subObject != NULL);
resultObj = Tcl_NewListObj(0, NULL);
AppendMethodRegistration(interp, resultObj, "create",
&(subObject->cl)->object,
ObjStr(subObject->cmdName), cmd, 0, 0, 0);
Tcl_SetObjResult(interp, resultObj);
break;
}
}
} else {
/*
* Should never happen.
*
* The warning is just a guess, so we don't raise an error here.
*/
NsfLog(interp, NSF_LOG_WARN, "Could not obtain alias definition for %s. "
"Maybe someone deleted the alias %s for object %s?",
methodName, methodName, ObjectName(regObject));
Tcl_ResetResult(interp);
}
}
} else {
/*
* The cmd must be a plain unregisted cmd
*/
switch (subcmd) {
case InfomethodsubcmdTypeIdx:
Tcl_SetObjResult(interp, NsfGlobalObjs[NSF_CMD]);
break;
case InfomethodsubcmdDefinitionIdx:
break;
case InfomethodsubcmdOriginIdx:
break;
}
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* ListMethodResolve --
*
* Call essentially ListMethod(), but try to resolve the method name/handle
* first.
*
* Results:
* Standard Tcl result
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int
ListMethodResolve(Tcl_Interp *interp, int subcmd,
NsfObject *contextObject, const char *pattern,
Tcl_Namespace *nsPtr, NsfObject *object,
Tcl_Obj *methodNameObj, int fromClassNS)
nonnull(1) nonnull(7);
static int
ListMethodResolve(Tcl_Interp *interp, int subcmd,
NsfObject *contextObject, const char *pattern,
Tcl_Namespace *nsPtr, NsfObject *object,
Tcl_Obj *methodNameObj, int fromClassNS) {
NsfObject *regObject, *defObject;
const char *methodName1 = NULL;
int result = TCL_OK;
Tcl_DString ds, *dsPtr = &ds;
Tcl_Command cmd;
assert(interp != NULL);
assert(methodNameObj != NULL);
Tcl_DStringInit(dsPtr);
cmd = ResolveMethodName(interp, nsPtr, methodNameObj,
dsPtr, ®Object, &defObject, &methodName1, &fromClassNS);
/*
* If the cmd is not found, we return for every sub-command but "exists"
* empty.
*/
if (likely(cmd != NULL)) {
result = ListMethod(interp, (regObject != NULL) ? regObject : object, (defObject != NULL) ? defObject : object,
methodName1, cmd, subcmd,
contextObject, pattern, (fromClassNS != 0) ? 0 : 1);
} else if (subcmd == InfomethodsubcmdExistsIdx) {
Tcl_SetObjResult(interp, Tcl_NewIntObj(0));
}
Tcl_DStringFree(dsPtr);
return result;
}
/*
*----------------------------------------------------------------------
* MethodSourceMatches --
*
* Check, whether the provided class or object (mutually exclusive) matches
* with the required method source (typically all|application|system).
*
* Results:
* Returns true or false
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int MethodSourceMatches(int withSource, NsfClass *cl, NsfObject *object) {
int isBaseClass;
if (withSource == SourceAllIdx) {
return 1;
}
if (cl == NULL) {
/*
* If the method is object specific, it can't be from a baseclass and must
* be application specific.
*/
assert(object != NULL);
return (withSource == SourceApplicationIdx && !IsBaseClass(object));
}
assert(cl != NULL);
isBaseClass = IsBaseClass(&cl->object);
if (withSource == SourceSystemIdx && isBaseClass) {
return 1;
} else if (withSource == SourceApplicationIdx && !isBaseClass) {
return 1;
}
return 0;
}
/*
*----------------------------------------------------------------------
* MethodTypeMatches --
*
* Check, whether the provided method (specified as a cmd) matches with the
* required method type (typically
* all|scripted|builtin|alias|forwarder|object|setter).
*
* Results:
* Returns true or false
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int MethodTypeMatches(Tcl_Interp *interp, int methodType, Tcl_Command cmd,
NsfObject *object, const char *methodName, int withPer_object,
int *isObject)
nonnull(1) nonnull(3) nonnull(5) nonnull(7);
static int
MethodTypeMatches(Tcl_Interp *interp, int methodType, Tcl_Command cmd,
NsfObject *object, const char *methodName, int withPer_object,
int *isObject) {
Tcl_ObjCmdProc *proc, *resolvedProc;
Tcl_Command importedCmd;
assert(interp != NULL);
assert(cmd != NULL);
assert(methodName != NULL);
assert(isObject != NULL);
proc = Tcl_Command_objProc(cmd);
importedCmd = GetOriginalCommand(cmd);
resolvedProc = Tcl_Command_objProc(importedCmd);
/*
* Return always state isObject, since the cmd might be an ensemble,
* where we have to search further
*/
*isObject = CmdIsNsfObject(importedCmd);
if (methodType == NSF_METHODTYPE_ALIAS) {
if (!(proc == NsfProcAliasMethod || AliasGet(interp, object->cmdName, methodName, withPer_object, 0))) {
return 0;
}
} else {
if (proc == NsfProcAliasMethod) {
if ((methodType & NSF_METHODTYPE_ALIAS) == 0) return 0;
}
/* the following cases are disjoint */
if (CmdIsProc(importedCmd)) {
/*fprintf(stderr,"%s scripted %d\n", methodName, methodType & NSF_METHODTYPE_SCRIPTED);*/
if ((methodType & NSF_METHODTYPE_SCRIPTED) == 0) return 0;
} else if (resolvedProc == NsfForwardMethod) {
if ((methodType & NSF_METHODTYPE_FORWARDER) == 0) return 0;
} else if (resolvedProc == NsfSetterMethod) {
if ((methodType & NSF_METHODTYPE_SETTER) == 0) return 0;
} else if (*isObject) {
if ((methodType & NSF_METHODTYPE_OBJECT) == 0) return 0;
} else if (resolvedProc == NsfProcStub) {
if ((methodType & NSF_METHODTYPE_NSFPROC) == 0) return 0;
} else if ((methodType & NSF_METHODTYPE_OTHER) == 0) {
/* fprintf(stderr,"OTHER %s not wanted %.4x\n", methodName, methodType);*/
return 0;
}
/* NsfObjscopedMethod ??? */
}
return 1;
}
/*
*----------------------------------------------------------------------
* ProtectionMatches --
*
* Check, whether the provided method (specified as a cmd) matches with the
* required call-protection (typically all|public|protected|private).
*
* Results:
* Returns true or false
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int ProtectionMatches(int withCallprotection, Tcl_Command cmd) nonnull(2);
static int
ProtectionMatches(int withCallprotection, Tcl_Command cmd) {
int result, isProtected, isPrivate, cmdFlags;
assert(cmd != NULL);
cmdFlags = Tcl_Command_flags(cmd);
isProtected = (cmdFlags & NSF_CMD_CALL_PROTECTED_METHOD) != 0;
isPrivate = (cmdFlags & NSF_CMD_CALL_PRIVATE_METHOD) != 0;
if (withCallprotection == CallprotectionNULL) {
withCallprotection = CallprotectionPublicIdx;
}
switch (withCallprotection) {
case CallprotectionAllIdx: result = 1; break;
case CallprotectionPublicIdx: result = (isProtected == 0); break;
case CallprotectionProtectedIdx: result = isProtected && !isPrivate; break;
case CallprotectionPrivateIdx: result = isPrivate; break;
default: result = 1;
}
return result;
}
/*
*----------------------------------------------------------------------
*
* ListMethodKeys --
*
* List the method names contained in the specified hash-table
* according to the filtering options (types, pattern,
* protection, etc.). Optionally, a name prefix can be provided
* in form of a Tcl_DString. The result is placed into the interp
* result.
*
* Results:
* Tcl result code.
*
* Side effects:
* Setting interp result.
*
*----------------------------------------------------------------------
*/
static int ListMethodKeys(Tcl_Interp *interp, Tcl_HashTable *tablePtr,
Tcl_DString *prefix, const char *pattern,
int methodType, int withCallprotection, int withPath,
Tcl_HashTable *dups, NsfObject *object, int withPer_object)
nonnull(1) nonnull(2);
static int
ListMethodKeys(Tcl_Interp *interp, Tcl_HashTable *tablePtr,
Tcl_DString *prefix, const char *pattern,
int methodType, int withCallprotection, int withPath,
Tcl_HashTable *dups, NsfObject *object, int withPer_object) {
Tcl_HashSearch hSrch;
Tcl_HashEntry *hPtr;
Tcl_Command cmd;
const char *key;
int isObject, methodTypeMatch;
int prefixLength = (prefix != NULL) ? Tcl_DStringLength(prefix) : 0;
Tcl_Obj *resultObj = Tcl_GetObjResult(interp);
assert(interp != NULL);
assert(tablePtr != NULL);
if (pattern && NoMetaChars(pattern) && strchr(pattern, ' ') == NULL) {
/*
* We have a pattern that can be used for direct lookup; no need
* to iterate.
*/
hPtr = Tcl_CreateHashEntry(tablePtr, pattern, NULL);
if (hPtr != NULL) {
NsfObject *childObject;
Tcl_Command origCmd;
key = Tcl_GetHashKey(tablePtr, hPtr);
cmd = (Tcl_Command)Tcl_GetHashValue(hPtr);
methodTypeMatch = MethodTypeMatches(interp, methodType, cmd, object, key,
withPer_object, &isObject);
if (Tcl_Command_flags(cmd) & NSF_CMD_CLASS_ONLY_METHOD && !NsfObjectIsClass(object)) {
return TCL_OK;
}
/*
* Aliased objects methods return 1 but lookup from cmd returns
* NULL. Below, we are just interested on true subobjects.
*/
origCmd = GetOriginalCommand(cmd);
childObject = (isObject == 1) ? NsfGetObjectFromCmdPtr(origCmd) : NULL;
if (childObject != NULL) {
if (withPath != 0) {
return TCL_OK;
}
/*
* Treat aliased object dispatch different from direct object
* dispatches.
*/
#if 0
if (cmd == origCmd && (childObject->flags & NSF_ALLOW_METHOD_DISPATCH ) == 0) {
/*fprintf(stderr, "no method dispatch allowed on child %s\n", ObjectName(childObject));*/
return TCL_OK;
}
#endif
}
if (ProtectionMatches(withCallprotection, cmd) && methodTypeMatch) {
if (prefixLength != 0) {
Tcl_DStringAppend(prefix, key, -1);
key = Tcl_DStringValue(prefix);
}
if (dups != NULL) {
int new;
Tcl_CreateHashEntry(dups, key, &new);
if (new != 0) {
Tcl_ListObjAppendElement(interp, resultObj, Tcl_NewStringObj(key, -1));
}
} else {
Tcl_ListObjAppendElement(interp, resultObj, Tcl_NewStringObj(key, -1));
}
}
}
return TCL_OK;
} else {
/*
* We have to iterate over the elements
*/
for (hPtr = Tcl_FirstHashEntry(tablePtr, &hSrch);
hPtr;
hPtr = Tcl_NextHashEntry(&hSrch)) {
NsfObject *childObject;
Tcl_Command origCmd;
key = Tcl_GetHashKey(tablePtr, hPtr);
cmd = (Tcl_Command)Tcl_GetHashValue(hPtr);
if (prefixLength != 0) {Tcl_DStringTrunc(prefix, prefixLength);}
methodTypeMatch = MethodTypeMatches(interp, methodType, cmd, object, key,
withPer_object, &isObject);
/*
* Aliased objects methods return 1 but lookup from cmd returns
* NULL. Below, we are just interested on true subobjects.
*/
origCmd = GetOriginalCommand(cmd);
childObject = (isObject == 1) ? NsfGetObjectFromCmdPtr(origCmd) : NULL;
if (childObject != NULL) {
if (withPath != 0) {
Tcl_DString ds, *dsPtr = &ds;
Tcl_HashTable *cmdTablePtr = (childObject->nsPtr != NULL) ? Tcl_Namespace_cmdTablePtr(childObject->nsPtr) : NULL;
if (cmdTablePtr == NULL) {
/* nothing to do */
continue;
}
if (childObject->flags & NSF_IS_SLOT_CONTAINER) {
/* Don't report slot container */
continue;
}
if ((childObject->flags & NSF_KEEP_CALLER_SELF) == 0) {
/* Do only report sub-objects with keep caller self */
continue;
}
/*fprintf(stderr, "ListMethodKeys key %s append key space flags %.6x\n",
key, childObject->flags);*/
if (prefix == NULL) {
DSTRING_INIT(dsPtr);
Tcl_DStringAppend(dsPtr, key, -1);
Tcl_DStringAppend(dsPtr, " ", 1);
ListMethodKeys(interp, cmdTablePtr, dsPtr, pattern, methodType, withCallprotection,
1, dups, object, withPer_object);
DSTRING_FREE(dsPtr);
} else {
Tcl_DStringAppend(prefix, key, -1);
Tcl_DStringAppend(prefix, " ", 1);
ListMethodKeys(interp, cmdTablePtr, prefix, pattern, methodType, withCallprotection,
1, dups, object, withPer_object);
}
/* don't list ensembles by themselves */
continue;
}
/*
* Treat aliased object dispatch different from direct object
* dispatches.
*/
#if 0
if (cmd == origCmd && (childObject->flags & NSF_ALLOW_METHOD_DISPATCH ) == 0) {
/*fprintf(stderr, "no method dispatch allowed on child %s\n", ObjectName(childObject));*/
continue;
}
#endif
}
if (Tcl_Command_flags(cmd) & NSF_CMD_CLASS_ONLY_METHOD && !NsfObjectIsClass(object)) continue;
if (!ProtectionMatches(withCallprotection, cmd) || !methodTypeMatch) continue;
if (prefixLength != 0) {
Tcl_DStringAppend(prefix, key, -1);
key = Tcl_DStringValue(prefix);
}
if (pattern && !Tcl_StringMatch(key, pattern)) continue;
if (dups != NULL) {
int new;
Tcl_CreateHashEntry(dups, key, &new);
if (new == 0) continue;
}
Tcl_ListObjAppendElement(interp, resultObj, Tcl_NewStringObj(key, -1));
}
}
/*fprintf(stderr, "listkeys returns '%s'\n", ObjStr(Tcl_GetObjResult(interp)));*/
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* ListChildren --
*
* List the children of the specified object. The result can be filtered
* via a pattern or a type.
*
* Results:
* Tcl result code.
*
* Side effects:
* Setting interp result.
*
*----------------------------------------------------------------------
*/
static int ListChildren(Tcl_Interp *interp, NsfObject *object, const char *pattern,
int classesOnly, NsfClass *type)
nonnull(1) nonnull(2);
static int
ListChildren(Tcl_Interp *interp, NsfObject *object, const char *pattern,
int classesOnly, NsfClass *type) {
NsfObject *childObject;
assert(interp != NULL);
assert(object != NULL);
if (object->nsPtr == NULL) {
return TCL_OK;
}
if (pattern != NULL && NoMetaChars(pattern)) {
Tcl_DString ds, *dsPtr = &ds;
Tcl_DStringInit(dsPtr);
if (*pattern != ':') {
/* build a fully qualified name */
DStringAppendQualName(dsPtr, object->nsPtr, pattern);
pattern = Tcl_DStringValue(dsPtr);
}
if ((childObject = GetObjectFromString(interp, pattern)) &&
(!classesOnly || NsfObjectIsClass(childObject)) &&
(!type || IsSubType(childObject->cl, type)) &&
(Tcl_Command_nsPtr(childObject->id) == object->nsPtr) /* true children */
) {
Tcl_SetObjResult(interp, childObject->cmdName);
} else {
Tcl_SetObjResult(interp, NsfGlobalObjs[NSF_EMPTY]);
}
Tcl_DStringFree(dsPtr);
} else {
Tcl_Obj *list = Tcl_NewListObj(0, NULL);
Tcl_HashSearch hSrch;
Tcl_HashTable *cmdTablePtr = Tcl_Namespace_cmdTablePtr(object->nsPtr);
Tcl_HashEntry *hPtr;
for (hPtr = Tcl_FirstHashEntry(cmdTablePtr, &hSrch);
hPtr;
hPtr = Tcl_NextHashEntry(&hSrch)) {
const char *key = Tcl_GetHashKey(cmdTablePtr, hPtr);
if (pattern == NULL || Tcl_StringMatch(key, pattern)) {
Tcl_Command cmd = (Tcl_Command)Tcl_GetHashValue(hPtr);
/*fprintf(stderr, "... check %s child key %s child object %p %p\n",
ObjectName(object), key, GetObjectFromString(interp, key),
NsfGetObjectFromCmdPtr(cmd));*/
if ((childObject = NsfGetObjectFromCmdPtr(cmd)) &&
(!classesOnly || NsfObjectIsClass(childObject)) &&
(!type || IsSubType(childObject->cl, type)) &&
(Tcl_Command_nsPtr(childObject->id) == object->nsPtr) /* true children */
) {
Tcl_ListObjAppendElement(interp, list, childObject->cmdName);
}
}
}
Tcl_SetObjResult(interp, list);
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* ListForward --
*
* List registered forwareder defined in the hash table. The result can be filtered
* via a pattern, optionally the forward definition is returned.
*
* Results:
* Tcl result code.
*
* Side effects:
* Setting interp result.
*
*----------------------------------------------------------------------
*/
static int ListForward(Tcl_Interp *interp, Tcl_HashTable *tablePtr,
const char *pattern, int withDefinition)
nonnull(1) nonnull(2);
static int
ListForward(Tcl_Interp *interp, Tcl_HashTable *tablePtr,
const char *pattern, int withDefinition) {
assert(interp != NULL);
assert(tablePtr != NULL);
if (withDefinition != 0) {
Tcl_HashEntry *hPtr = (pattern != NULL) ? Tcl_CreateHashEntry(tablePtr, pattern, NULL) : NULL;
/*
* Notice: we don't use pattern for wildcard matching here; pattern can
* only contain wildcards when used without "-definition".
*/
if (hPtr != NULL) {
Tcl_Command cmd = (Tcl_Command)Tcl_GetHashValue(hPtr);
ClientData clientData = (cmd != NULL) ? Tcl_Command_objClientData(cmd) : NULL;
ForwardCmdClientData *tcd = (ForwardCmdClientData *)clientData;
if (tcd && Tcl_Command_objProc(cmd) == NsfForwardMethod) {
Tcl_Obj *listObj = Tcl_NewListObj(0, NULL);
AppendForwardDefinition(interp, listObj, tcd);
Tcl_SetObjResult(interp, listObj);
return TCL_OK;
}
}
return NsfPrintError(interp, "'%s' is not a forwarder", pattern);
}
return ListMethodKeys(interp, tablePtr, NULL, pattern, NSF_METHODTYPE_FORWARDER,
CallprotectionAllIdx, 0, NULL, NULL, 0);
}
/*
*----------------------------------------------------------------------
*
* ListDefinedMethods --
*
* List the methods defined by the specified object/class
* according to the filtering options (types, pattern,
* protection, etc.). The result is placed into the interp
* result.
*
* Results:
* Tcl result code.
*
* Side effects:
* Setting interp result.
*
*----------------------------------------------------------------------
*/
static int
ListDefinedMethods(Tcl_Interp *interp, NsfObject *object, const char *pattern,
int withPer_object, int methodType, int withCallproctection,
int withPath) {
Tcl_HashTable *cmdTablePtr;
Tcl_DString ds, *dsPtr = NULL;
assert(interp != NULL);
assert(object != NULL);
if (pattern && *pattern == ':' && *(pattern + 1) == ':') {
Namespace *nsPtr, *dummy1Ptr, *dummy2Ptr;
const char *remainder;
/*fprintf(stderr, "we have a colon pattern '%s' methodtype %.6x\n", pattern, methodType);*/
TclGetNamespaceForQualName(interp, pattern, NULL, 0,
&nsPtr, &dummy1Ptr, &dummy2Ptr, &remainder);
/*fprintf(stderr,
"TclGetNamespaceForQualName with %s => (%p %s) (%p %s) (%p %s) (%p %s)\n",
pattern,
nsPtr, (nsPtr != NULL) ? nsPtr->fullName : "",
dummy1Ptr, (dummy1Ptr != NULL) ? dummy1Ptr->fullName : "",
dummy2Ptr, (dummy2Ptr != NULL) ? dummy2Ptr->fullName : "",
remainder, (remainder != 0) ? remainder : "");*/
if (nsPtr != NULL) {
cmdTablePtr = Tcl_Namespace_cmdTablePtr(nsPtr);
dsPtr = &ds;
Tcl_DStringInit(dsPtr);
Tcl_DStringAppend(dsPtr, nsPtr->fullName, -1);
if (Tcl_DStringLength(dsPtr) > 2) {
Tcl_DStringAppend(dsPtr, "::", 2);
}
pattern = remainder;
} else {
cmdTablePtr = NULL;
}
} else if (NsfObjectIsClass(object) && !withPer_object) {
cmdTablePtr = Tcl_Namespace_cmdTablePtr(((NsfClass *)object)->nsPtr);
} else {
cmdTablePtr = (object->nsPtr != NULL) ? Tcl_Namespace_cmdTablePtr(object->nsPtr) : NULL;
}
if (cmdTablePtr != NULL) {
ListMethodKeys(interp, cmdTablePtr, dsPtr, pattern, methodType, withCallproctection, withPath,
NULL, object, withPer_object);
if (dsPtr != NULL) {
Tcl_DStringFree(dsPtr);
}
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* ListSuperClasses --
*
* List the superclasses of a class. Optionally the transitive closure is
* computed and the result can be filtered via a pattern.
*
* Results:
* Tcl result code.
*
* Side effects:
* Setting interp result.
*
*----------------------------------------------------------------------
*/
static int ListSuperClasses(Tcl_Interp *interp, NsfClass *cl, Tcl_Obj *pattern, int withClosure)
nonnull(1) nonnull(2);
static int
ListSuperClasses(Tcl_Interp *interp, NsfClass *cl, Tcl_Obj *pattern, int withClosure) {
NsfObject *matchObject = NULL;
Tcl_Obj *patternObj = NULL, *outObjPtr;
const char *patternString = NULL;
ClientData clientData;
int rc;
assert(interp != NULL);
assert(cl != NULL);
if (cl->super == NULL) {
return TCL_OK;
}
if (pattern != NULL &&
ConvertToObjpattern(interp, pattern, NULL, &clientData, &outObjPtr) == TCL_OK) {
patternObj = (Tcl_Obj *)clientData;
if (GetMatchObject(interp, patternObj, pattern, &matchObject, &patternString) == -1) {
/*
* The pattern has no meta chars and does not correspond to an existing
* object. Therefore, it can't be a superclass.
*/
if (patternObj != NULL) {
DECR_REF_COUNT2("patternObj", patternObj);
}
return TCL_OK;
}
}
if (withClosure != 0) {
NsfClasses *pl = PrecedenceOrder(cl);
if (pl != NULL) {
pl = pl->nextPtr;
}
rc = AppendMatchingElementsFromClasses(interp, pl, patternString, matchObject);
} else {
NsfClasses *clSuper = NsfReverseClasses(cl->super);
rc = AppendMatchingElementsFromClasses(interp, clSuper, patternString, matchObject);
NsfClassListFree(clSuper);
}
if (matchObject != NULL) {
Tcl_SetObjResult(interp, (rc != 0) ? matchObject->cmdName : NsfGlobalObjs[NSF_EMPTY]);
}
if (patternObj != NULL) {
DECR_REF_COUNT2("patternObj", patternObj);
}
return TCL_OK;
}
/********************************
* End result setting commands
********************************/
/*
*----------------------------------------------------------------------
*
* AliasIndex --
*
* The alias index is an internal data structure to keep track how
* aliases are constructed. This function computes the key of the index.
*
* Results:
* string value of the index
*
* Side effects:
* updating DString
*
*----------------------------------------------------------------------
*/
static const char *AliasIndex(Tcl_DString *dsPtr, Tcl_Obj *cmdName, const char *methodName, int withPer_object)
nonnull(1) nonnull(2) nonnull(3) returns_nonnull;
static const char *
AliasIndex(Tcl_DString *dsPtr, Tcl_Obj *cmdName, const char *methodName, int withPer_object) {
assert(dsPtr != NULL);
assert(cmdName != NULL);
assert(methodName != NULL);
Tcl_DStringInit(dsPtr);
Tcl_DStringAppend(dsPtr, ObjStr(cmdName), -1);
Tcl_DStringAppend(dsPtr, ",", 1);
Tcl_DStringAppend(dsPtr, methodName, -11);
if (withPer_object == 1) {
Tcl_DStringAppend(dsPtr, ",1", 2);
} else {
Tcl_DStringAppend(dsPtr, ",0", 2);
}
/*fprintf(stderr, "AI %s\n", Tcl_DStringValue(dsPtr));*/
return Tcl_DStringValue(dsPtr);
}
/*
*----------------------------------------------------------------------
*
* AliasAdd --
*
* Add an alias to the alias index
*
* Results:
* Standard Tcl result
*
* Side effects:
* Adding value to the hidden associated array.
*
*----------------------------------------------------------------------
*/
static int AliasAdd(Tcl_Interp *interp, Tcl_Obj *cmdName, const char *methodName, int withPer_object,
const char *cmd) nonnull(1) nonnull(2) nonnull(3) nonnull(5);
static int
AliasAdd(Tcl_Interp *interp, Tcl_Obj *cmdName, const char *methodName, int withPer_object,
const char *cmd) {
Tcl_DString ds, *dsPtr = &ds;
assert(interp != NULL);
assert(cmdName != NULL);
assert(methodName != NULL);
assert(cmd != NULL);
Tcl_SetVar2Ex(interp, NsfGlobalStrings[NSF_ARRAY_ALIAS],
AliasIndex(dsPtr, cmdName, methodName, withPer_object),
Tcl_NewStringObj(cmd, -1),
TCL_GLOBAL_ONLY);
/*fprintf(stderr, "aliasAdd ::nsf::alias(%s) '%s' returned %p\n",
AliasIndex(dsPtr, cmdName, methodName, withPer_object), cmd, 1);*/
Tcl_DStringFree(dsPtr);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* AliasDelete --
*
* Delete an alias from the index
*
* Results:
* Standard Tcl result
*
* Side effects:
* delete an entry from the hidden associative array
*
*----------------------------------------------------------------------
*/
static int
AliasDelete(Tcl_Interp *interp, Tcl_Obj *cmdName, const char *methodName, int withPer_object) {
Tcl_DString ds, *dsPtr = &ds;
int result;
assert(interp != NULL);
assert(cmdName != NULL);
assert(methodName != NULL);
result = Tcl_UnsetVar2(interp, NsfGlobalStrings[NSF_ARRAY_ALIAS],
AliasIndex(dsPtr, cmdName, methodName, withPer_object),
TCL_GLOBAL_ONLY);
/*fprintf(stderr, "aliasDelete ::nsf::alias(%s) returned %d (%d)\n",
AliasIndex(dsPtr, cmdName, methodName, withPer_object), result);*/
Tcl_DStringFree(dsPtr);
return result;
}
/*
*----------------------------------------------------------------------
*
* AliasGet --
*
* Get an entry from the alias index
*
* Results:
* Tcl obj
*
* Side effects:
* delete an entry from the hidden associative array
*
*----------------------------------------------------------------------
*/
static Tcl_Obj *
AliasGet(Tcl_Interp *interp, Tcl_Obj *cmdName, const char *methodName, int withPer_object, int leaveError) {
Tcl_DString ds, *dsPtr = &ds;
Tcl_Obj *obj;
assert(interp != NULL);
assert(cmdName != NULL);
assert(methodName != NULL);
obj = Tcl_GetVar2Ex(interp, NsfGlobalStrings[NSF_ARRAY_ALIAS],
AliasIndex(dsPtr, cmdName, methodName, withPer_object),
TCL_GLOBAL_ONLY);
/*fprintf(stderr, "aliasGet methodName '%s' returns %p\n", methodName, obj);*/
Tcl_DStringFree(dsPtr);
if (obj == NULL && leaveError) {
NsfPrintError(interp, "could not obtain alias definition for %s %s.",
ObjStr(cmdName), methodName);
}
return obj;
}
/*
*----------------------------------------------------------------------
* AliasDeleteObjectReference --
*
* Delete an alias to an referenced object. Such aliases are
* created by registering an alias to an object. This function
* distinguishes between a sub-object and an alias to an object,
* deletes the alias but never the referenced object.
*
* Results:
* 1 when alias is deleted.
*
* Side effects:
* Deletes cmd sometimes
*
*----------------------------------------------------------------------
*/
static int
AliasDeleteObjectReference(Tcl_Interp *interp, Tcl_Command cmd) {
NsfObject *referencedObject = NsfGetObjectFromCmdPtr(cmd);
assert(interp != NULL);
assert(cmd != NULL);
assert(referencedObject != NULL);
/*fprintf(stderr, "AliasDeleteObjectReference on %p obj %p\n", cmd, referencedObject);*/
if (referencedObject->refCount > 0
&& cmd != referencedObject->id) {
/*
* The cmd is an aliased object, reduce the refCount of the
* object, delete the cmd.
*/
/*fprintf(stderr, "remove alias %s to %s\n",
Tcl_GetCommandName(interp, cmd), ObjectName(referencedObject));*/
NsfCleanupObject(referencedObject, "AliasDeleteObjectReference");
Tcl_DeleteCommandFromToken(interp, cmd);
return 1;
}
return 0;
}
/*
*----------------------------------------------------------------------
* AliasRefetch --
*
* Perform a refetch of an epoched aliased cmd and update the
* AliasCmdClientData structure with fresh values.
*
* Results:
* Tcl result code.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int
AliasRefetch(Tcl_Interp *interp, NsfObject *object, const char *methodName, AliasCmdClientData *tcd) {
Tcl_Obj **listElements, *entryObj, *targetObj;
int nrElements, withPer_object;
NsfObject *defObject;
Tcl_Command cmd;
assert(interp != NULL);
assert(object != NULL);
assert(methodName != NULL);
assert(tcd != NULL);
defObject = (tcd->class != NULL) ? &(tcd->class->object) : object;
/*
* Get the targetObject. Currently, we can get it just via the
* alias array.
*/
withPer_object = (tcd->class != NULL) ? 0 : 1;
entryObj = AliasGet(interp, defObject->cmdName, methodName, withPer_object, 1);
if (entryObj == NULL) {
return TCL_ERROR;
}
INCR_REF_COUNT(entryObj);
Tcl_ListObjGetElements(interp, entryObj, &nrElements, &listElements);
targetObj = listElements[nrElements-1];
NsfLog(interp, NSF_LOG_NOTICE,
"trying to refetch an epoched cmd %p as %s -- cmdName %s\n",
(void *)tcd->aliasedCmd, methodName, ObjStr(targetObj));
/*
* Replace cmd and its objProc and clientData with a newly fetched
* version.
*/
cmd = Tcl_GetCommandFromObj(interp, targetObj);
if (cmd != NULL) {
cmd = GetOriginalCommand(cmd);
/*fprintf(stderr, "cmd %p epoch %d deleted %.6x\n",
cmd,
Tcl_Command_cmdEpoch(cmd),
Tcl_Command_flags(cmd) & CMD_IS_DELETED);*/
if (Tcl_Command_flags(cmd) & CMD_IS_DELETED) {
cmd = NULL;
}
}
if (cmd == NULL) {
int result = NsfPrintError(interp, "target \"%s\" of alias %s apparently disappeared",
ObjStr(targetObj), methodName);
DECR_REF_COUNT(entryObj);
return result;
}
assert(Tcl_Command_objProc(cmd));
NsfCommandRelease(tcd->aliasedCmd);
tcd->objProc = Tcl_Command_objProc(cmd);
tcd->aliasedCmd = cmd;
tcd->clientData = Tcl_Command_objClientData(cmd);
NsfCommandPreserve(tcd->aliasedCmd);
DECR_REF_COUNT(entryObj);
/*
* Now, we should be able to proceed as planned, we have an
* non-epoched aliasCmd.
*/
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* AliasDereference --
*
* Dereference a cmd in respect of the the alias structure. If necessary,
* this command refetches the aliased command.
*
* Results:
* NULL, in case refetching fails,
* the aliased cmd if it was an alias, or
* the original cmd
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
NSF_INLINE static Tcl_Command AliasDereference(Tcl_Interp *interp, NsfObject *object, const char *methodName, Tcl_Command cmd)
nonnull(1) nonnull(2) nonnull(3) nonnull(4);
NSF_INLINE static Tcl_Command
AliasDereference(Tcl_Interp *interp, NsfObject *object, const char *methodName, Tcl_Command cmd) {
assert(interp != NULL);
assert(object != NULL);
assert(methodName != NULL);
assert(cmd != NULL);
if (unlikely(Tcl_Command_objProc(cmd) == NsfProcAliasMethod)) {
AliasCmdClientData *tcd = (AliasCmdClientData *)Tcl_Command_objClientData(cmd);
assert(tcd != NULL);
if (unlikely(Tcl_Command_cmdEpoch(tcd->aliasedCmd))) {
/*fprintf(stderr, "NsfProcAliasMethod aliasedCmd %p epoch %p\n",
tcd->aliasedCmd, Tcl_Command_cmdEpoch(tcd->aliasedCmd));*/
if (AliasRefetch(interp, object, methodName, tcd) != TCL_OK) {
return NULL;
}
}
return tcd->aliasedCmd;
}
return cmd;
}
#if defined(NSF_ASSEMBLE)
# include "asm/nsfAssemble.c"
#else
static int
NsfAsmMethodCreateCmd(Tcl_Interp *interp, NsfObject *defObject,
int with_checkAlways, int withInner_namespace,
int withPer_object, NsfObject *regObject,
Tcl_Obj *nameObj, Tcl_Obj *argumentsObj, Tcl_Obj *bodyObj) {
assert(interp != NULL);
assert(defObject != NULL);
assert(nameObj != NULL);
assert(argumentsObj != NULL);
assert(bodyObj != NULL);
/*
* Dummy stub; used, when compiled without NSF_ASSEMBLE
*/
return TCL_OK;
}
#endif
/*
*----------------------------------------------------------------------
* SetBooleanFlag --
*
* Set an unsigned int flag based on valueObj
*
* Results:
* Tcl result code
*
* Side effects:
* update passed flags
*
*----------------------------------------------------------------------
*/
static int SetBooleanFlag(Tcl_Interp *interp, unsigned int *flagsPtr, unsigned int flag, Tcl_Obj *valueObj, int *flagValue)
nonnull(1) nonnull(2) nonnull(4) nonnull(5);
static int
SetBooleanFlag(Tcl_Interp *interp, unsigned int *flagsPtr, unsigned int flag, Tcl_Obj *valueObj, int *flagValue) {
int result;
assert(interp != NULL);
assert(flagsPtr != NULL);
assert(valueObj != NULL);
assert(flagValue != NULL);
result = Tcl_GetBooleanFromObj(interp, valueObj, flagValue);
if (unlikely(result != TCL_OK)) {
return result;
}
if (*flagValue) {
*flagsPtr |= flag;
} else {
*flagsPtr &= ~flag;
}
return result;
}
/***********************************************************************
* Begin generated Next Scripting commands
***********************************************************************/
/*
cmd __db_compile_epoch NsfDebugCompileEpoch {}
*/
static int NsfDebugCompileEpoch(Tcl_Interp *interp) nonnull(1);
static int
NsfDebugCompileEpoch(Tcl_Interp *interp) {
assert(interp != NULL);
Tcl_SetObjResult(interp, Tcl_NewIntObj(((Interp *)interp)->compileEpoch));
return TCL_OK;
}
/*
cmd __db_show_obj NsfDebugShowObj {
{-argName "obj" -required 1 -type tclobj}
}
*/
static int NsfDebugShowObj(Tcl_Interp *interp, Tcl_Obj *objPtr) nonnull(1) nonnull(2);
static int
NsfDebugShowObj(Tcl_Interp *interp, Tcl_Obj *objPtr) {
assert(interp != NULL);
assert(objPtr != NULL);
fprintf(stderr, "*** obj %p refCount %d type <%s>\n",
(void *)objPtr, objPtr->refCount, (objPtr->typePtr != NULL) ? objPtr->typePtr->name : "");
if (objPtr->typePtr == &NsfObjectMethodObjType
|| objPtr->typePtr == &NsfInstanceMethodObjType
) {
NsfMethodContext *mcPtr = objPtr->internalRep.twoPtrValue.ptr1;
int currentMethodEpoch = objPtr->typePtr == &NsfObjectMethodObjType ?
RUNTIME_STATE(interp)->objectMethodEpoch :
RUNTIME_STATE(interp)->instanceMethodEpoch;
Tcl_Command cmd = mcPtr->cmd;
fprintf(stderr, " method epoch %d max %d cmd %p objProc %p flags %.6x\n",
mcPtr->methodEpoch, currentMethodEpoch,
(void *)cmd,
(cmd != NULL) ? ((void *)((Command *)cmd)->objProc) : NULL,
mcPtr->flags);
if (cmd != NULL) {
fprintf(stderr, "... cmd %p flags %.6x\n", (void *)cmd, Tcl_Command_flags(cmd));
assert(((Command *)cmd)->objProc != NULL);
}
assert( currentMethodEpoch >= mcPtr->methodEpoch);
}
return TCL_OK;
}
/*
cmd __db_show_stack NsfShowStackCmd {}
*/
static int
NsfShowStackCmd(Tcl_Interp *interp) {
assert(interp != NULL);
NsfShowStack(interp);
return TCL_OK;
}
/*
cmd __db_run_assertions NsfDebugRunAssertionsCmd {}
*/
static int
NsfDebugRunAssertionsCmd(Tcl_Interp *interp) {
NsfObjectSystem *osPtr;
NsfCmdList *instances = NULL, *entry;
assert(interp != NULL);
/*
* Collect all instances from all object systems.
*/
for (osPtr = RUNTIME_STATE(interp)->objectSystems; osPtr; osPtr = osPtr->nextPtr) {
GetAllInstances(interp, &instances, osPtr->rootClass);
}
for (entry = instances; entry; entry = entry->nextPtr) {
#if !defined(NDEBUG)
NsfObject *object = (NsfObject *)entry->clorobj;
#endif
assert(object != NULL);
assert(object->refCount > 0);
assert(object->cmdName->refCount > 0);
assert(object->activationCount >= 0);
#if defined(CHECK_ACTIVATION_COUNTS)
if (object->activationCount > 0) {
Tcl_CallFrame *framePtr;
int count = 0;
NsfClasses *unstackedEntries = RUNTIME_STATE(interp)->cscList;
/*fprintf(stderr, "DEBUG obj %p %s activationcount %d\n",
object, ObjectName(object), object->activationCount);*/
framePtr = (Tcl_CallFrame *)Tcl_Interp_framePtr(interp);
for (; framePtr; framePtr = Tcl_CallFrame_callerPtr(framePtr)) {
int frameFlags = Tcl_CallFrame_isProcCallFrame(framePtr);
NsfCallStackContent *cscPtr =
(frameFlags & (FRAME_IS_NSF_METHOD|FRAME_IS_NSF_CMETHOD)) ?
((NsfCallStackContent *)Tcl_CallFrame_clientData(framePtr)) : NULL;
if (cscPtr && cscPtr->self == object) count ++;
if (cscPtr && (NsfObject *)cscPtr->cl == object) count ++;
}
for (; unstackedEntries; unstackedEntries = unstackedEntries->nextPtr) {
NsfCallStackContent *cscPtr = (NsfCallStackContent *)unstackedEntries->cl;
if (cscPtr && cscPtr->self == object) count ++;
if (cscPtr && (NsfObject *)cscPtr->cl == object) count ++;
}
if (count != object->activationCount) {
fprintf(stderr, "DEBUG obj %p %s activationcount %d on stack %d; "
"might be from non-stacked but active call-stack content\n",
object, ObjectName(object), object->activationCount, count);
fprintf(stderr, "fixed count %d\n", count);
/*NsfShowStack(interp);*/
/*return NsfPrintError(interp, "wrong activation count for object %s", ObjectName(object));*/
}
}
#endif
}
CmdListFree(&instances, NULL);
/*fprintf(stderr, "all assertions passed\n");*/
return TCL_OK;
}
/*
cmd __profile_clear_data NsfProfileClearDataStub {}
*/
static int NsfProfileClearDataStub(Tcl_Interp *interp) nonnull(1);
static int
NsfProfileClearDataStub(Tcl_Interp *interp) {
assert(interp != NULL);
#if defined(NSF_PROFILE)
NsfProfileClearData(interp);
#endif
return TCL_OK;
}
/*
cmd __profile_get_data NsfProfileGetDataStub {}
*/
static int NsfProfileGetDataStub(Tcl_Interp *interp) nonnull(1);
static int
NsfProfileGetDataStub(Tcl_Interp *interp) {
assert(interp != NULL);
#if defined(NSF_PROFILE)
NsfProfileGetData(interp);
#endif
return TCL_OK;
}
/*
cmd __profile_trace NsfProfileTraceStub {
{-argName "-enable" -required 1 -nrargs 1 -type boolean}
{-argName "-verbose" -required 0 -nrargs 1 -type boolean}
}
*/
static int NsfProfileTraceStub(Tcl_Interp *interp, int withEnable, int withVerbose)
NSF_nonnull(1);
static int
NsfProfileTraceStub(Tcl_Interp *interp, int withEnable, int withVerbose) {
assert(interp != NULL);
#if defined(NSF_PROFILE)
NsfProfileTrace(interp, withEnable, withVerbose);
#endif
return TCL_OK;
}
/*
*----------------------------------------------------------------------
* NsfUnsetUnknownArgsCmd --
*
* Unset variables set from arguments with the default dummy
* default value. The dummy default values are set by
* ArgumentDefaults()
*
* Results:
* Tcl result code.
*
* Side effects:
* unsets some variables
*
*----------------------------------------------------------------------
*/
/*
cmd __unset_unknown_args NsfUnsetUnknownArgsCmd {}
*/
static int
NsfUnsetUnknownArgsCmd(Tcl_Interp *interp) {
CallFrame *varFramePtr = Tcl_Interp_varFramePtr(interp);
Proc *proc = Tcl_CallFrame_procPtr(varFramePtr);
assert(interp != NULL);
if (likely(proc != NULL)) {
CompiledLocal *ap;
Var *varPtr;
int i;
for (ap = proc->firstLocalPtr, i = 0; ap; ap = ap->nextPtr, i++) {
if (!TclIsCompiledLocalArgument(ap)) continue;
varPtr = &Tcl_CallFrame_compiledLocals(varFramePtr)[i];
/*fprintf(stderr, "NsfUnsetUnknownArgsCmd var '%s' i %d fi %d var %p flags %.8x obj %p unk %p\n",
ap->name, i, ap->frameIndex, varPtr, varPtr->flags, varPtr->value.objPtr,
NsfGlobalObjs[NSF___UNKNOWN__]);*/
if (varPtr->value.objPtr != NsfGlobalObjs[NSF___UNKNOWN__]) continue;
/*fprintf(stderr, "NsfUnsetUnknownArgsCmd must unset %s\n", ap->name);*/
Tcl_UnsetVar2(interp, ap->name, NULL, 0);
}
}
return TCL_OK;
}
/*
cmd asmproc NsfAsmProcCmd {
{-argName "-ad" -required 0 -nrargs 0 -type switch}
{-argName "-checkalways" -required 0 -nrargs 0 -type switch}
{-argName "procName" -required 1 -type tclobj}
{-argName "arguments" -required 1 -type tclobj}
{-argName "body" -required 1 -type tclobj}
}
*/
#if !defined(NSF_ASSEMBLE)
static int
NsfAsmProcCmd(Tcl_Interp *interp, int with_ad, int with_checkAlways, Tcl_Obj *nameObj, Tcl_Obj *arguments, Tcl_Obj *body) {
assert(interp != NULL);
assert(nameObj != NULL);
assert(arguments != NULL);
assert(body != NULL);
return TCL_OK;
}
#else
static int
NsfAsmProcCmd(Tcl_Interp *interp, int with_ad, int with_checkAlways, Tcl_Obj *nameObj, Tcl_Obj *arguments, Tcl_Obj *body) {
NsfParsedParam parsedParam;
int result;
assert(interp != NULL);
assert(nameObj != NULL);
assert(arguments != NULL);
assert(body != NULL);
/*
* Parse argument list "arguments" to determine if we should provide
* nsf parameter handling.
*/
result = ParamDefsParse(interp, nameObj, arguments,
NSF_DISALLOWED_ARG_METHOD_PARAMETER, 0,
&parsedParam);
if (unlikely(result != TCL_OK)) {
return result;
}
if (parsedParam.paramDefs != NULL) {
/*
* We need parameter handling.
*/
result = NsfAsmProcAddParam(interp, &parsedParam, nameObj, body, with_ad, with_checkAlways);
} else {
/*
* No parameter handling needed.
*/
result = NsfAsmProcAddArgs(interp, arguments, nameObj, body, with_ad, with_checkAlways);
}
return result;
}
#endif
/*
cmd "cmd::info" NsfCmdInfoCmd {
{-argName "subcmd" -required 1 -typeName "methodgetcmd" -type "args|body|definition|exists|registrationhandle|definitionhandle|origin|parameter|syntax|type|precondition|postcondition|submethods|returns"}
{-argName "-context" -required 0 -type object}
{-argName "methodName" -required 1 -type tclobj}
{-argName "pattern" -required 0}
} {-nxdoc 1}
*/
static int
NsfCmdInfoCmd(Tcl_Interp *interp, int subcmd, NsfObject *context, Tcl_Obj *methodNameObj, const char *pattern) {
assert(interp != NULL);
assert(methodNameObj != NULL);
return ListMethodResolve(interp, subcmd, context, pattern, NULL, NULL, methodNameObj, 0);
}
/*
cmd configure NsfConfigureCmd {
{-argName "configureoption" -required 1 -type "debug|dtrace|filter|profile|softrecreate|objectsystems|keepcmds|checkresults|checkarguments"}
{-argName "value" -required 0 -type tclobj}
}
*/
static int
NsfConfigureCmd(Tcl_Interp *interp, int configureoption, Tcl_Obj *valueObj) {
int bool;
assert(interp != NULL);
#if defined(NSF_DTRACE)
if (NSF_DTRACE_CONFIGURE_PROBE_ENABLED()) {
/* TODO: opts copied from tclAPI.h; maybe make global value? */
static const char *opts[] = {
"debug", "dtrace", "filter", "profile", "trace", "softrecreate",
"objectsystems", "keepcmds", "checkresults", "checkarguments", NULL};
NSF_DTRACE_CONFIGURE_PROBE((char *)opts[configureoption-1], (valueObj != NULL) ? ObjStr(valueObj) : NULL);
}
#endif
if (configureoption == ConfigureoptionObjectsystemsIdx) {
NsfObjectSystem *osPtr;
Tcl_Obj *list = Tcl_NewListObj(0, NULL);
for (osPtr = RUNTIME_STATE(interp)->objectSystems; osPtr; osPtr = osPtr->nextPtr) {
Tcl_Obj *osObj = Tcl_NewListObj(0, NULL);
Tcl_Obj *systemMethods = Tcl_NewListObj(0, NULL);
int idx;
Tcl_ListObjAppendElement(interp, osObj, osPtr->rootClass->object.cmdName);
Tcl_ListObjAppendElement(interp, osObj, osPtr->rootMetaClass->object.cmdName);
for (idx = 0; Nsf_SystemMethodOpts[idx]; idx++) {
/*fprintf(stderr, "opt %s %s\n", Nsf_SystemMethodOpts[idx],
osPtr->methods[idx] ? ObjStr(osPtr->methods[idx]) : "NULL");*/
if (osPtr->methods[idx] == NULL) {
continue;
}
Tcl_ListObjAppendElement(interp, systemMethods, Tcl_NewStringObj(Nsf_SystemMethodOpts[idx], -1));
if (osPtr->handles[idx] || osPtr->protected[idx]) {
Tcl_Obj *listObj = Tcl_NewListObj(0, NULL);
Tcl_ListObjAppendElement(interp, listObj, osPtr->methods[idx]);
Tcl_ListObjAppendElement(interp, listObj, osPtr->handles[idx]);
if (osPtr->protected[idx]) {
Tcl_ListObjAppendElement(interp, listObj, Tcl_NewIntObj(1));
}
Tcl_ListObjAppendElement(interp, systemMethods, listObj);
} else {
Tcl_ListObjAppendElement(interp, systemMethods, osPtr->methods[idx]);
}
}
Tcl_ListObjAppendElement(interp, osObj, systemMethods);
Tcl_ListObjAppendElement(interp, list, osObj);
}
Tcl_SetObjResult(interp, list);
return TCL_OK;
}
if (configureoption == ConfigureoptionDebugIdx) {
int level;
if (valueObj != NULL) {
int result = Tcl_GetIntFromObj(interp, valueObj, &level);
if (unlikely(result != TCL_OK)) {
return result;
}
RUNTIME_STATE(interp)->debugLevel = level;
}
Tcl_SetIntObj(Tcl_GetObjResult(interp),
RUNTIME_STATE(interp)->debugLevel);
return TCL_OK;
}
/*
* All other configure options are boolean.
*/
if (valueObj != NULL) {
int result = Tcl_GetBooleanFromObj(interp, valueObj, &bool);
if (unlikely(result != TCL_OK)) {
return result;
}
}
switch (configureoption) {
case ConfigureoptionFilterIdx:
Tcl_SetBooleanObj(Tcl_GetObjResult(interp),
(RUNTIME_STATE(interp)->doFilters));
if (valueObj != NULL) {
RUNTIME_STATE(interp)->doFilters = bool;
}
break;
case ConfigureoptionProfileIdx:
Tcl_SetBooleanObj(Tcl_GetObjResult(interp),
(RUNTIME_STATE(interp)->doProfile));
if (valueObj != NULL) {
#if defined(NSF_PROFILE)
RUNTIME_STATE(interp)->doProfile = bool;
#else
NsfLog(interp, NSF_LOG_WARN, "No profile support compiled in");
#endif
}
break;
case ConfigureoptionTraceIdx:
Tcl_SetBooleanObj(Tcl_GetObjResult(interp),
(RUNTIME_STATE(interp)->doTrace));
if (valueObj != NULL) {
#if defined(NSF_PROFILE)
RUNTIME_STATE(interp)->doTrace = bool;
/*
* Turn automically profiling on&off, when trace is turned on/off
*/
RUNTIME_STATE(interp)->doProfile = bool;
#else
NsfLog(interp, NSF_LOG_WARN, "No profile support compiled in");
#endif
}
break;
case ConfigureoptionSoftrecreateIdx:
Tcl_SetBooleanObj(Tcl_GetObjResult(interp),
(RUNTIME_STATE(interp)->doSoftrecreate));
if (valueObj != NULL) {
RUNTIME_STATE(interp)->doSoftrecreate = bool;
}
break;
case ConfigureoptionKeepcmdsIdx:
Tcl_SetBooleanObj(Tcl_GetObjResult(interp),
(RUNTIME_STATE(interp)->doKeepcmds));
if (valueObj != NULL) {
RUNTIME_STATE(interp)->doKeepcmds = bool;
}
break;
case ConfigureoptionCheckresultsIdx:
Tcl_SetBooleanObj(Tcl_GetObjResult(interp),
(RUNTIME_STATE(interp)->doCheckResults));
if (valueObj != NULL) {
RUNTIME_STATE(interp)->doCheckResults = bool;
}
break;
case ConfigureoptionCheckargumentsIdx:
Tcl_SetBooleanObj(Tcl_GetObjResult(interp),
(RUNTIME_STATE(interp)->doCheckArguments) != 0);
if (valueObj != NULL) {
RUNTIME_STATE(interp)->doCheckArguments = (bool != 0) ? NSF_ARGPARSE_CHECK : 0;
}
break;
}
return TCL_OK;
}
/*
cmd colon NsfColonCmd {
{-argName "args" -type allargs}
}
*/
static int
NsfColonCmd(Tcl_Interp *interp, int nobjc, Tcl_Obj *CONST nobjv[]) {
const char *methodName = ObjStr(nobjv[0]);
NsfObject *self = GetSelfObj(interp);
assert(interp != NULL);
if (unlikely(self == NULL)) {
return NsfNoCurrentObjectError(interp, methodName);
}
/*fprintf(stderr, "Colon dispatch %s.%s (%d)\n",
ObjectName(self), ObjStr(nobjv[0]), nobjc);*/
if (likely(!(*methodName == ':' && *(methodName + 1) == '\0'))) {
return ObjectDispatch(self, interp, nobjc, nobjv, NSF_CM_NO_SHIFT);
}
/*
* First arg is a single colon and no other args are given.
*/
if (nobjc <= 1) {
Tcl_SetObjResult(interp, self->cmdName);
return TCL_OK;
}
/*
* Multiple arguments were given.
*/
methodName = ObjStr(nobjv[1]);
if (*methodName != '-') {
/*
* No need to parse arguments (local, intrinsic, ...).
*/
return ObjectDispatch(self, interp, nobjc, nobjv, 0);
} else {
ParseContext pc;
int withIntrinsic, withLocal, withSystem, flags;
Tcl_Obj *methodObj;
/*
* Parse arguments, use definitions from nsf::my
*/
if (ArgumentParse(interp, nobjc, nobjv, NULL, nobjv[0],
method_definitions[NsfMyCmdIdx].paramDefs,
method_definitions[NsfMyCmdIdx].nrParameters,
0, NSF_ARGPARSE_BUILTIN, &pc) != TCL_OK) {
return TCL_ERROR;
}
withIntrinsic = (int)PTR2INT(pc.clientData[0]);
withLocal = (int)PTR2INT(pc.clientData[1]);
withSystem = (int)PTR2INT(pc.clientData[2]);
methodObj = (Tcl_Obj *)pc.clientData[3];
assert(pc.status == 0);
if ((withIntrinsic && withLocal)
|| (withIntrinsic && withSystem)
|| (withLocal && withSystem)) {
return NsfPrintError(interp, "flags '-intrinsic', '-local' and '-system' are mutual exclusive");
}
flags = NSF_CSC_IMMEDIATE;
if (withIntrinsic != 0) {flags |= NSF_CM_INTRINSIC_METHOD;}
if (withLocal != 0) {flags |= NSF_CM_LOCAL_METHOD;}
if (withSystem != 0) {flags |= NSF_CM_SYSTEM_METHOD;}
return CallMethod(self, interp, methodObj, (nobjc-pc.lastObjc)+2, nobjv+pc.lastObjc, flags);
}
}
/*
cmd "directdispatch" NsfDirectDispatchCmd {
{-argName "object" -required 1 -type object}
{-argName "-frame" -required 0 -nrargs 1 -type "method|object|default" -default "default"}
{-argName "command" -required 1 -type tclobj}
{-argName "args" -type args}
}
*/
static int
NsfDirectDispatchCmd(Tcl_Interp *interp, NsfObject *object, int withFrame,
Tcl_Obj *commandObj, int nobjc, Tcl_Obj *CONST nobjv[]) {
int result;
const char *methodName = ObjStr(commandObj);
Tcl_Command cmd, importedCmd;
CallFrame frame, *framePtr = &frame;
Tcl_ObjCmdProc *proc;
unsigned int flags = 0;
int useCmdDispatch = 1;
assert(interp != NULL);
assert(object != NULL);
assert(commandObj != NULL);
/*fprintf(stderr, "NsfDirectDispatchCmd obj=%s, cmd m='%s' oc %d\n", ObjectName(object), methodName, nobjc);*/
if (unlikely(*methodName != ':')) {
return NsfPrintError(interp, "method name '%s' must be fully qualified", methodName);
}
/*
* We have a fully qualified name of a Tcl command that will be dispatched.
*/
cmd = Tcl_GetCommandFromObj(interp, commandObj);
if (likely(cmd != NULL)) {
importedCmd = TclGetOriginalCommand(cmd);
if (unlikely(importedCmd != NULL)) {
cmd = importedCmd;
}
}
if (unlikely(cmd == NULL)) {
return NsfPrintError(interp, "cannot lookup command '%s'", methodName);
}
proc = Tcl_Command_objProc(cmd);
if (proc == TclObjInterpProc ||
proc == NsfForwardMethod ||
proc == NsfObjscopedMethod ||
proc == NsfSetterMethod ||
CmdIsNsfObject(cmd)) {
if (withFrame && withFrame != FrameDefaultIdx) {
return NsfPrintError(interp, "cannot use -frame object|method in dispatch for command '%s'",
methodName);
}
useCmdDispatch = 0;
} else {
if (unlikely(withFrame == FrameMethodIdx)) {
useCmdDispatch = 0;
} else {
useCmdDispatch = 1;
}
}
/*
* If "withFrame == FrameObjectIdx" is specified, a call-stack frame is
* pushed to make instance variables accessible for the command.
*/
if (unlikely(withFrame == FrameObjectIdx)) {
Nsf_PushFrameObj(interp, object, framePtr);
flags = NSF_CSC_IMMEDIATE;
}
/*
* Since we know, that we are always called with a full argument
* vector, we can include the cmd name in the objv by using
* nobjv-1; this way, we avoid a memcpy().
*/
if (useCmdDispatch != 0) {
if (NSF_DTRACE_METHOD_ENTRY_ENABLED()) {
NSF_DTRACE_METHOD_ENTRY(ObjectName(object),
"",
(char *)methodName,
nobjc, (Tcl_Obj **)nobjv);
}
result = CmdMethodDispatch(object, interp, nobjc+1, nobjv-1,
object, cmd, NULL);
} else {
/*
* If "withFrame == FrameMethodIdx" is specified, a call-stack frame is
* pushed to make instance variables accessible for the command.
*/
if (unlikely(withFrame == FrameMethodIdx)) {
flags = NSF_CSC_FORCE_FRAME|NSF_CSC_IMMEDIATE;
}
result = MethodDispatch(object, interp,
nobjc+1, nobjv-1, cmd, object,
NULL /*NsfClass *cl*/,
Tcl_GetCommandName(interp, cmd),
NSF_CSC_TYPE_PLAIN, flags);
}
if (unlikely(withFrame == FrameObjectIdx)) {
Nsf_PopFrameObj(interp, framePtr);
}
return result;
}
/*
cmd "dispatch" NsfDispatchCmd {
{-argName "object" -required 1 -type object}
{-argName "-intrinsic" -required 0 -nrargs 0}
{-argName "-system" -required 0 -nrargs 0}
{-argName "command" -required 1 -type tclobj}
{-argName "args" -type args}
}
*/
static int
NsfDispatchCmd(Tcl_Interp *interp, NsfObject *object,
int withIntrinsic, int withSystem,
Tcl_Obj *commandObj, int nobjc, Tcl_Obj *CONST nobjv[]) {
unsigned int flags = NSF_CM_NO_UNKNOWN|NSF_CSC_IMMEDIATE|NSF_CM_IGNORE_PERMISSIONS|NSF_CM_NO_SHIFT;
Tcl_Obj *CONST*objv = nobjv-1;
assert(interp != NULL);
assert(object != NULL);
assert(commandObj != NULL);
/*
* We use the construct tclObj + args in the spec to enforce that at least a
* commandName is specified (this way we allow empty "args", and can provide
* a nice error message, if cmdName is not specified). Since the we know
* that the commandObj has to be right before "args" in the objv, we can
* decrement the nobjv to obtain objv (and increment nobjc), be we make sure
* that this assumption is correct.
*/
assert(objv[0] == commandObj);
assert(ISOBJ(commandObj));
nobjc++;
#if 0
{int i;
fprintf(stderr, "NsfDispatchCmd %s method %s oc %2d", ObjectName(object), ObjStr(commandObj), nobjc);
for(i = 0; i < nobjc; i++) {fprintf(stderr, " [%d]=%s,", i, ObjStr(objv[i]));}
fprintf(stderr, "\n");
}
#endif
if (unlikely(withIntrinsic && withSystem)) {
return NsfPrintError(interp, "flags '-intrinsic' and '-system' are mutual exclusive");
}
/*
* Dispatch the command the method from the precedence order, with filters
* etc. -- strictly speaking unnecessary, but this function can be used to
* call protected methods and provide the flags '-intrinsics' and '-system'.
*/
if (withIntrinsic != 0) {flags |= NSF_CM_INTRINSIC_METHOD;}
if (withSystem != 0) {flags |= NSF_CM_SYSTEM_METHOD;}
/*
* Since we know, that we are always called with a full argument
* vector, we can include the cmd name in the objv by using
* nobjv-1; this way, we avoid a memcpy().
*/
return ObjectDispatch(object, interp, nobjc, objv, flags);
}
/*
cmd finalize NsfFinalizeCmd {
{-argName "-keepvars" -required 0 -nrargs 0}
}
*/
static int
NsfFinalizeCmd(Tcl_Interp *interp, int withKeepvars) {
int result;
assert(interp != NULL);
#if defined(NSF_STACKCHECK)
{NsfRuntimeState *rst = RUNTIME_STATE(interp);
NsfLog(interp, NSF_LOG_WARN, "Stack max usage %ld",
labs(rst->maxStack - rst->bottomOfStack));
}
#endif
/*fprintf(stderr, "+++ call tcl-defined exit handler\n");*/
/*
* Evaluate user-defined exit handler.
*/
result = Tcl_Eval(interp, "::nsf::__exithandler");
if (unlikely(result != TCL_OK)) {
fprintf(stderr, "User defined exit handler contains errors!\n"
"Error in line %d: %s\nExecution interrupted.\n",
Tcl_GetErrorLine(interp), ObjStr(Tcl_GetObjResult(interp)));
}
ObjectSystemsCleanup(interp, withKeepvars);
#ifdef DO_CLEANUP
{
NsfRuntimeState *rst = RUNTIME_STATE(interp);
# if defined(CHECK_ACTIVATION_COUNTS)
assert(rst->cscList == NULL);
# endif
/*fprintf(stderr, "CLEANUP TOP NS\n");*/
Tcl_Export(interp, rst->NsfNS, "", 1);
if (rst->NsfClassesNS != NULL) {
MEM_COUNT_FREE("TclNamespace",rst->NsfClassesNS);
Tcl_DeleteNamespace(rst->NsfClassesNS);
}
if (rst->NsfNS != NULL) {
MEM_COUNT_FREE("TclNamespace",rst->NsfNS);
Tcl_DeleteNamespace(rst->NsfNS);
}
}
#endif
return TCL_OK;
}
/*
cmd interp NsfInterpObjCmd {
{-argName "name"}
{-argName "args" -type allargs}
}
*/
/* create a slave interp that calls Next Scripting Init */
static int
NsfInterpObjCmd(Tcl_Interp *interp, const char *name, int objc, Tcl_Obj *CONST objv[]) {
assert(interp != NULL);
assert(name != NULL);
/* create a fresh Tcl interpreter, or pass command to an existing one */
if (NsfCallCommand(interp, NSF_INTERP, objc, objv) != TCL_OK) {
return TCL_ERROR;
}
/*
* Upon [interp create], set up NSF for the new child interp by running
* Nsf_Init()
*/
if (isCreateString(name)) {
Tcl_Obj *slaveCmdObj;
Tcl_Interp *slavePtr;
/*
* Tcl_InterpObjCmd() stores the newly created child interp's command name
* in the interp result store.
*/
slaveCmdObj = Tcl_GetObjResult(interp);
slavePtr = Tcl_GetSlave(interp, ObjStr(slaveCmdObj));
if (slavePtr == NULL) {
return NsfPrintError(interp, "creation of slave interpreter failed");
}
if (Nsf_Init(slavePtr) == TCL_ERROR) {
return TCL_ERROR;
}
}
return TCL_OK;
}
/*
cmd is NsfIsCmd {
{-argName "-complain" -nrargs 0}
{-argName "-configure" -nrargs 0}
{-argName "-name" -required 0}
{-argName "constraint" -required 1 -type tclobj}
{-argName "value" -required 1 -type tclobj}
} {-nxdoc 1}
*/
static int
NsfIsCmd(Tcl_Interp *interp,
int withComplain,
int doConfigureParameter,
const char *name,
Tcl_Obj *constraintObj,
Tcl_Obj *valueObj) {
Nsf_Param *paramPtr = NULL;
int result;
assert(interp != NULL);
assert(constraintObj != NULL);
assert(valueObj != NULL);
result = ParameterCheck(interp, constraintObj, valueObj,
(name != NULL) ? name : "value:", 1,
(name != NULL),
doConfigureParameter,
¶mPtr);
if (paramPtr == NULL) {
/*
* We could not convert the arguments. Even with noComplain, we
* report the invalid converter spec as exception.
*/
return TCL_ERROR;
}
if (paramPtr->converter == ConvertViaCmd
&& (withComplain == 0 || result == TCL_OK)) {
Tcl_ResetResult(interp);
}
if (withComplain == 0) {
Tcl_SetIntObj(Tcl_GetObjResult(interp), (result == TCL_OK));
result = TCL_OK;
} else if (likely(result == TCL_OK)) {
Tcl_SetIntObj(Tcl_GetObjResult(interp), 1);
}
return result;
}
/*
cmd method::alias NsfMethodAliasCmd {
{-argName "object" -type object}
{-argName "-per-object"}
{-argName "methodName"}
{-argName "-frame" -required 0 -nrargs 1 -type "method|object|default" -default "default"}
{-argName "-protection" -required 0 -type "call-protected|redefine-protected|none" -default "none"}
{-argName "cmdName" -required 1 -type tclobj}
}
*/
static int
NsfMethodAliasCmd(Tcl_Interp *interp, NsfObject *object, int withPer_object,
const char *methodName, int withFrame, int withProtection,
Tcl_Obj *cmdName) {
Tcl_ObjCmdProc *objProc, *newObjProc = NULL;
Tcl_CmdDeleteProc *deleteProc = NULL;
AliasCmdClientData *tcd = NULL; /* make compiler happy */
Tcl_Command cmd, oldCmd, newCmd = NULL;
Tcl_Namespace *nsPtr;
int result;
unsigned int flags;
NsfClass *cl = (withPer_object || ! NsfObjectIsClass(object)) ? NULL : (NsfClass *)object;
NsfObject *oldTargetObject, *newTargetObject;
assert(interp != NULL);
assert(object != NULL);
assert(methodName != NULL);
assert(*methodName != ':');
assert(cmdName != NULL);
cmd = Tcl_GetCommandFromObj(interp, cmdName);
if (cmd == NULL) {
return NsfPrintError(interp, "cannot lookup command '%s'", ObjStr(cmdName));
}
cmd = GetOriginalCommand(cmd);
objProc = Tcl_Command_objProc(cmd);
assert(objProc != NULL);
/* objProc is either ...
*
* 1. NsfObjDispatch: a command representing an Next Scripting object
*
* 2. TclObjInterpProc: a cmd standing for a Tcl proc (including
* Next Scripting methods), verified through CmdIsProc() -> to be
* wrapped by NsfProcAliasMethod()
*
* 3. NsfForwardMethod: an Next Scripting forwarder
*
* 4. NsfSetterMethod: an Next Scripting setter
*
* 5. arbitrary Tcl commands (e.g. set, ..., ::nsf::relation, ...)
*
*/
if (withFrame == FrameObjectIdx) {
newObjProc = NsfObjscopedMethod;
}
/*
* We need to perform a defensive lookup of a previously defined
* object-alias under the given methodName.
*/
nsPtr = (cl != NULL) ? cl->nsPtr : object->nsPtr;
oldCmd = (nsPtr != NULL) ? FindMethod(nsPtr, methodName) : NULL;
newTargetObject = NsfGetObjectFromCmdPtr(cmd);
if (oldCmd != NULL) {
oldTargetObject = NsfGetObjectFromCmdPtr(oldCmd);
/* fprintf(stderr, "oldTargetObject %p flags %.6x newTargetObject %p\n",
oldTargetObject, (oldTargetObject != NULL) ? oldTargetObject->flags : 0, newTargetObject);*/
/*
* We might have to decrement the reference counter on an previously
* aliased object. Decrement the reference count to the old aliased object
* only, when it is different to the new target Object.
*/
if (oldTargetObject != NULL && oldTargetObject != newTargetObject) {
/*fprintf(stderr, "--- releasing old target object %p refCount %d\n",
oldTargetObject, oldTargetObject->refCount);*/
assert(oldTargetObject->refCount > 0);
AliasDeleteObjectReference(interp, oldCmd);
}
} else {
oldTargetObject = NULL;
}
if (newTargetObject != NULL) {
/*
* We set now for every alias to an object a stub proc, such we can
* distinguish between cases, where the user wants to create a method, and
* between cases, where object-invocation via method interface might
* happen.
*/
newObjProc = NsfProcAliasMethod;
} else if (CmdIsProc(cmd)) {
/*
* When we have a Tcl proc|nsf-method as alias, then use the
* wrapper, which will be deleted automatically when the original
* proc/method is deleted.
*/
newObjProc = NsfProcAliasMethod;
if (objProc == TclObjInterpProc) {
/*
* We have an alias to a tcl proc;
*/
Proc *procPtr = (Proc *)Tcl_Command_objClientData(cmd);
Tcl_Obj *bodyObj = (procPtr != NULL) ? procPtr->bodyPtr : NULL;
if (bodyObj && bodyObj->typePtr == Nsf_OT_byteCodeType) {
/*
* Flush old byte code
*/
/*fprintf(stderr, "flush byte code\n");*/
bodyObj->typePtr->freeIntRepProc(bodyObj);
}
}
if (withFrame && withFrame != FrameDefaultIdx) {
return NsfPrintError(interp,
"cannot use -frame object|method in alias for scripted command '%s'",
ObjStr(cmdName));
}
}
if (newObjProc != NULL) {
/* add a wrapper */
/*fprintf(stderr, "NsfMethodAliasCmd add wrapper cmd %p\n", cmd);*/
NsfCommandPreserve(cmd);
tcd = NEW(AliasCmdClientData);
tcd->cmdName = object->cmdName;
tcd->interp = interp; /* just for deleting the alias */
tcd->object = NULL;
tcd->class = (cl != NULL) ? (NsfClass *) object : NULL;
tcd->objProc = objProc;
tcd->aliasedCmd = cmd;
tcd->clientData = Tcl_Command_objClientData(cmd);
objProc = newObjProc;
deleteProc = AliasCmdDeleteProc;
if (tcd->cmdName != NULL) {INCR_REF_COUNT(tcd->cmdName);}
} else {
/*
* Call the command directly (must be a c-implemented command not
* depending on a volatile client data)
*/
tcd = Tcl_Command_objClientData(cmd);
/*fprintf(stderr, "NsfMethodAliasCmd no wrapper cmd %p\n", cmd);*/
}
switch (withProtection) {
case ProtectionCall_protectedIdx: flags = NSF_CMD_CALL_PROTECTED_METHOD; break;
case ProtectionRedefine_protectedIdx: flags = NSF_CMD_REDEFINE_PROTECTED_METHOD; break;
default: flags = 0;
}
if (cl != NULL) {
result = NsfAddClassMethod(interp, (Nsf_Class *)cl, methodName,
objProc, tcd, deleteProc, flags);
nsPtr = cl->nsPtr;
} else {
result = NsfAddObjectMethod(interp, (Nsf_Object *)object, methodName,
objProc, tcd, deleteProc, flags);
nsPtr = object->nsPtr;
}
if (likely(result == TCL_OK)) {
newCmd = FindMethod(nsPtr, methodName);
}
#if defined(WITH_IMPORT_REFS)
if (newObjProc != NULL) {
/*
* Define the reference chain like for 'namespace import' to
* obtain automatic deletes when the original command is deleted.
*/
ImportRef *refPtr = (ImportRef *) ckalloc(sizeof(ImportRef));
refPtr->importedCmdPtr = (Command *) newCmd;
refPtr->nextPtr = ((Command *) tcd->aliasedCmd)->importRefPtr;
((Command *) tcd->aliasedCmd)->importRefPtr = refPtr;
tcd->aliasCmd = newCmd;
}
#else
if (newObjProc != NULL) {
tcd->aliasCmd = newCmd;
}
#endif
if (newCmd != NULL) {
AliasAdd(interp, object->cmdName, methodName, cl == NULL, ObjStr(cmdName));
if (withFrame == FrameMethodIdx) {
Tcl_Command_flags(newCmd) |= NSF_CMD_NONLEAF_METHOD;
/*fprintf(stderr, "setting aliased for cmd %p %s flags %.6x, tcd = %p\n",
newCmd, methodName, Tcl_Command_flags(newCmd), tcd);*/
}
Tcl_SetObjResult(interp, MethodHandleObj(object, cl == NULL, methodName));
result = TCL_OK;
}
return result;
}
/*
cmd method::assertion NsfMethodAssertionCmd {
{-argName "object" -type object}
{-argName "assertionsubcmd" -required 1 -type "check|object-invar|class-invar"}
{-argName "arg" -required 0 -type tclobj}
}
Make "::nsf::assertion" a cmd rather than a method, otherwise we
cannot define e.g. a "method check options {...}" to reset the check
options in case of a failed option, since assertion checking would
be applied on the sketched method already.
*/
static int
NsfMethodAssertionCmd(Tcl_Interp *interp, NsfObject *object, int subcmd, Tcl_Obj *arg) {
#if defined(NSF_WITH_ASSERTIONS)
NsfClass *class;
assert(interp != NULL);
assert(object != NULL);
switch (subcmd) {
case AssertionsubcmdCheckIdx:
if (arg != NULL) {
return AssertionSetCheckOptions(interp, object, arg);
} else {
return AssertionListCheckOption(interp, object);
}
break;
case AssertionsubcmdObject_invarIdx:
if (arg != NULL) {
NsfObjectOpt *opt = NsfRequireObjectOpt(object);
AssertionSetInvariants(interp, &opt->assertions, arg);
} else {
if (object->opt && object->opt->assertions) {
Tcl_SetObjResult(interp, AssertionList(interp, object->opt->assertions->invariants));
}
}
break;
case AssertionsubcmdClass_invarIdx:
if (!NsfObjectIsClass(object)) {
return NsfPrintError(interp, "object is not a class");
}
class = (NsfClass *)object;
if (arg != NULL) {
NsfClassOpt *opt = NsfRequireClassOpt(class);
AssertionSetInvariants(interp, &opt->assertions, arg);
} else {
if (class->opt && class->opt->assertions) {
Tcl_SetObjResult(interp, AssertionList(interp, class->opt->assertions->invariants));
}
}
}
#endif
return TCL_OK;
}
/*
cmd method::create NsfMethodCreateCmd {
{-argName "object" -required 1 -type object}
{-argName "-checkalways" -required 0 -nrargs 0 -type switch}
{-argName "-inner-namespace"}
{-argName "-per-object"}
{-argName "-reg-object" -required 0 -nrargs 1 -type object}
{-argName "name" -required 1 -type tclobj}
{-argName "arguments" -required 1 -type tclobj}
{-argName "body" -required 1 -type tclobj}
{-argName "-precondition" -nrargs 1 -type tclobj}
{-argName "-postcondition" -nrargs 1 -type tclobj}
}
*/
static int
NsfMethodCreateCmd(Tcl_Interp *interp, NsfObject *defObject,
int withCheckAlways, int withInner_namespace,
int withPer_object, NsfObject *regObject,
Tcl_Obj *nameObj, Tcl_Obj *arguments, Tcl_Obj *body,
Tcl_Obj *withPrecondition, Tcl_Obj *withPostcondition) {
NsfClass *cl =
(withPer_object || ! NsfObjectIsClass(defObject)) ?
NULL : (NsfClass *)defObject;
assert(interp != NULL);
assert(defObject != NULL);
assert(nameObj != NULL);
assert(arguments != NULL);
assert(body != NULL);
if (cl == NULL) {
RequireObjNamespace(interp, defObject);
}
return MakeMethod(interp, defObject, regObject, cl,
nameObj, arguments, body,
withPrecondition, withPostcondition,
withInner_namespace, (withCheckAlways != 0) ? NSF_ARGPARSE_CHECK : 0);
}
/*
cmd "method::delete" NsfMethodDeleteCmd {
{-argName "object" -required 1 -type object}
{-argName "-per-object"}
{-argName "methodName" -required 1 -type tclobj}
}
*/
static int
NsfMethodDeleteCmd(Tcl_Interp *interp, NsfObject *object, int withPer_object,
Tcl_Obj *methodNameObj) {
NsfObject *regObject, *defObject;
const char *methodName1 = NULL;
NsfClass *cl = withPer_object == 0 && NsfObjectIsClass(object) ? (NsfClass *)object : NULL;
int fromClassNS = cl != NULL, result;
Tcl_DString ds, *dsPtr = &ds;
Tcl_Command cmd;
assert(interp != NULL);
assert(object != NULL);
assert(methodNameObj != NULL);
Tcl_DStringInit(dsPtr);
cmd = ResolveMethodName(interp, (cl != NULL) ? cl->nsPtr : object->nsPtr, methodNameObj,
dsPtr, ®Object, &defObject, &methodName1, &fromClassNS);
/*fprintf(stderr,
"NsfMethodDeleteCmd method %s '%s' object %p regObject %p defObject %p cl %p fromClass %d cmd %p\n",
ObjStr(methodNameObj), methodName1, object, regObject, defObject, cl, fromClassNS, cmd);*/
if (cmd != NULL) {
methodName1 = Tcl_GetCommandName(interp, cmd);
if (defObject != NULL) {
cl = withPer_object == 0 && NsfObjectIsClass(defObject) ? (NsfClass *)defObject : NULL;
} else {
defObject = object;
}
if (RUNTIME_STATE(interp)->exitHandlerDestroyRound == NSF_EXITHANDLER_OFF) {
result = (cl != NULL) ?
NsfRemoveClassMethod(interp, (Nsf_Class *)defObject, methodName1) :
NsfRemoveObjectMethod(interp, (Nsf_Object *)defObject, methodName1);
} else {
result = TCL_OK;
}
} else {
result = NsfPrintError(interp, "%s: %s method '%s' does not exist",
ObjectName(object), (withPer_object == 1) ? "object specific" : "instance",
ObjStr(methodNameObj));
}
Tcl_DStringFree(dsPtr);
return result;
}
/*
cmd method::forward NsfMethodForwardCmd {
{-argName "object" -required 1 -type object}
{-argName "-per-object" -required 0 -nrargs 0 -type switch}
{-argName "method" -required 1 -type tclobj}
{-argName "-default" -type tclobj}
{-argName "-earlybinding" -nrargs 0}
{-argName "-prefix" -type tclobj}
{-argName "-frame" -nrargs 1 -type "object|method|default" -default default}
{-argName "-verbose" -nrargs 0}
{-argName "target" -type tclobj}
{-argName "args" -type args}
}
*/
static int
NsfMethodForwardCmd(Tcl_Interp *interp,
NsfObject *object, int withPer_object,
Tcl_Obj *methodObj,
Tcl_Obj *withDefault,
int withEarlybinding,
Tcl_Obj *withOnerror,
Tcl_Obj *withMethodprefix,
int withFrame, int withVerbose,
Tcl_Obj *target, int nobjc, Tcl_Obj *CONST nobjv[]) {
ForwardCmdClientData *tcd = NULL;
int result;
assert(interp != NULL);
assert(object != NULL);
assert(methodObj != NULL);
result = ForwardProcessOptions(interp, methodObj,
withDefault, withEarlybinding,
withOnerror, withMethodprefix,
withFrame, withVerbose,
target, nobjc, nobjv, &tcd);
if (likely(result == TCL_OK)) {
const char *methodName = NSTail(ObjStr(methodObj));
NsfClass *cl =
(withPer_object || ! NsfObjectIsClass(object)) ?
NULL : (NsfClass *)object;
tcd->object = object;
if (cl == NULL) {
result = NsfAddObjectMethod(interp, (Nsf_Object *)object, methodName,
(Tcl_ObjCmdProc *)NsfForwardMethod,
tcd, ForwardCmdDeleteProc, 0);
} else {
result = NsfAddClassMethod(interp, (Nsf_Class *)cl, methodName,
(Tcl_ObjCmdProc *)NsfForwardMethod,
tcd, ForwardCmdDeleteProc, 0);
}
if (likely(result == TCL_OK)) {
Tcl_SetObjResult(interp, MethodHandleObj(object, withPer_object, methodName));
}
}
if (result != TCL_OK && tcd) {
ForwardCmdDeleteProc(tcd);
}
return result;
}
/*
cmd ::method::property NsfMethodPropertyCmd {
{-argName "object" -required 1 -type object}
{-argName "-per-object"}
{-argName "methodName" -required 1 -type tclobj}
{-argName "methodproperty" -required 1 -type "class-only|call-private|call-protected|redefine-protected|returns|slotobj"}
{-argName "value" -type tclobj}
}
*/
static int
NsfMethodPropertyCmd(Tcl_Interp *interp, NsfObject *object, int withPer_object,
Tcl_Obj *methodObj, int methodproperty, Tcl_Obj *valueObj) {
const char *methodName = ObjStr(methodObj);
NsfObject *defObject;
Tcl_Command cmd;
NsfClass *cl = withPer_object == 0 && NsfObjectIsClass(object) ? (NsfClass *)object : NULL;
int fromClassNS = cl != NULL;
unsigned int flag;
assert(interp != NULL);
assert(object != NULL);
assert(methodObj != NULL);
cmd = ResolveMethodName(interp, (cl != NULL) ? cl->nsPtr : object->nsPtr, methodObj,
NULL, NULL, &defObject, NULL, &fromClassNS);
/*fprintf(stderr, "methodProperty for method '%s' prop %d value %s => cl %p cmd %p\n",
methodName, methodproperty, (valueObj != NULL) ? ObjStr(valueObj) : "NULL", cl, cmd);*/
if (unlikely(cmd == NULL)) {
return NsfPrintError(interp, "cannot lookup %s method '%s' for %s",
cl == NULL ? "object " : "",
methodName, ObjectName(object));
}
switch (methodproperty) {
case MethodpropertyClass_onlyIdx: /* fall through */
case MethodpropertyCall_privateIdx: /* fall through */
case MethodpropertyCall_protectedIdx: /* fall through */
case MethodpropertyRedefine_protectedIdx: /* fall through */
{
int impliedSetFlag = 0, impliedClearFlag = 0;
switch (methodproperty) {
case MethodpropertyClass_onlyIdx:
flag = NSF_CMD_CLASS_ONLY_METHOD;
break;
case MethodpropertyCall_privateIdx:
flag = NSF_CMD_CALL_PRIVATE_METHOD;
impliedSetFlag = NSF_CMD_CALL_PROTECTED_METHOD;
break;
case MethodpropertyCall_protectedIdx:
impliedClearFlag = NSF_CMD_CALL_PRIVATE_METHOD;
flag = NSF_CMD_CALL_PROTECTED_METHOD;
break;
case MethodpropertyRedefine_protectedIdx:
flag = NSF_CMD_REDEFINE_PROTECTED_METHOD;
break;
default: flag = 0;
}
if (valueObj != NULL) {
int bool, result;
result = Tcl_GetBooleanFromObj(interp, valueObj, &bool);
if (unlikely(result != TCL_OK)) {
return result;
}
if (bool != 0) {
/*
* set flag
*/
Tcl_Command_flags(cmd) |= flag;
if (impliedSetFlag != 0) {
Tcl_Command_flags(cmd) |= impliedSetFlag;
}
} else {
/*
* clear flag
*/
Tcl_Command_flags(cmd) &= ~flag;
if (impliedClearFlag != 0) {
Tcl_Command_flags(cmd) &= ~impliedClearFlag;
}
}
if (cl != NULL) {
NsfInstanceMethodEpochIncr("Permissions");
} else {
NsfObjectMethodEpochIncr("Permissions");
}
}
Tcl_SetIntObj(Tcl_GetObjResult(interp), (Tcl_Command_flags(cmd) & flag) != 0);
break;
}
case MethodpropertyReturnsIdx:
{
NsfParamDefs *paramDefs;
Tcl_Obj **objPtr;
paramDefs = ParamDefsGet(cmd, NULL);
/*fprintf(stderr, "MethodProperty, ParamDefsGet cmd %p paramDefs %p returns %p\n",
cmd, paramDefs, (paramDefs != NULL) ?paramDefs->returns:NULL);*/
if (valueObj == NULL) {
/* a query for "returns" */
Tcl_Obj *resultObj;
if (paramDefs == NULL) {
resultObj = NsfGlobalObjs[NSF_EMPTY];
} else {
objPtr = ¶mDefs->returns;
resultObj = *objPtr ? *objPtr : NsfGlobalObjs[NSF_EMPTY];
}
Tcl_SetObjResult(interp, resultObj);
} else {
/* setting "returns" */
const char *valueString = ObjStr(valueObj);
if (paramDefs == NULL) {
/* acquire new paramDefs */
paramDefs = ParamDefsNew();
ParamDefsStore(interp, cmd, paramDefs, 0);
/*fprintf(stderr, "new param definitions %p for cmd %p %s\n", paramDefs, cmd, methodName);*/
}
objPtr = ¶mDefs->returns;
/* Set a new value; if there is already a value, free it */
if (*objPtr) {
DECR_REF_COUNT2("paramDefsObj", *objPtr);
}
if (*valueString == '\0') {
/* set the value to NULL */
*objPtr = NULL;
} else {
*objPtr = valueObj;
INCR_REF_COUNT2("paramDefsObj", *objPtr);
}
}
break;
}
}
return TCL_OK;
}
/*
cmd "method::registered" NsfMethodRegisteredCmd {
{-argName "handle" -required 1 -type tclobj}
}
*/
static int
NsfMethodRegisteredCmd(Tcl_Interp *interp, Tcl_Obj *methodNameObj) {
NsfObject *regObject;
int fromClassNS = 0;
Tcl_Command cmd;
assert(interp != NULL);
assert(methodNameObj != NULL);
cmd = ResolveMethodName(interp, NULL, methodNameObj,
NULL, ®Object, NULL, NULL, &fromClassNS);
/*
* In case the provided cmd is fully qualified and refers to a registered
* method, the function returns the object, on which the method was
* resisted.
*/
Tcl_SetObjResult(interp, (cmd && regObject) ? regObject->cmdName : NsfGlobalObjs[NSF_EMPTY]);
return TCL_OK;
}
/*
cmd method::setter NsfMethodSetterCmd {
{-argName "object" -required 1 -type object}
{-argName "-per-object"}
{-argName "parameter" -type tclobj}
}
*/
static int
NsfMethodSetterCmd(Tcl_Interp *interp, NsfObject *object, int withPer_object, Tcl_Obj *parameter) {
NsfClass *cl = (withPer_object || ! NsfObjectIsClass(object)) ? NULL : (NsfClass *)object;
const char *methodName = ObjStr(parameter);
SetterCmdClientData *setterClientData;
size_t j, length;
int result;
assert(interp != NULL);
assert(object != NULL);
assert(parameter != NULL);
if (unlikely(*methodName == '-' || *methodName == ':')) {
return NsfPrintError(interp, "invalid setter name \"%s\" (must not start with a dash or colon)",
methodName);
}
setterClientData = NEW(SetterCmdClientData);
setterClientData->object = NULL;
setterClientData->paramsPtr = NULL;
length = strlen(methodName);
for (j = 0; j < length; j++) {
if (methodName[j] == ':' || methodName[j] == ' ') break;
}
if (j < length) {
/* looks as if we have a parameter specification */
int result, possibleUnknowns = 0, plainParams = 0, nrNonposArgs = 0;
setterClientData->paramsPtr = ParamsNew(1);
result = ParamParse(interp, NsfGlobalObjs[NSF_SETTER], parameter,
NSF_DISALLOWED_ARG_SETTER|NSF_ARG_HAS_DEFAULT,
setterClientData->paramsPtr, &possibleUnknowns,
&plainParams, &nrNonposArgs);
if (unlikely(result != TCL_OK)) {
SetterCmdDeleteProc(setterClientData);
return result;
}
methodName = setterClientData->paramsPtr->name;
} else {
setterClientData->paramsPtr = NULL;
}
if (cl != NULL) {
result = NsfAddClassMethod(interp, (Nsf_Class *)cl, methodName,
(Tcl_ObjCmdProc *)NsfSetterMethod,
setterClientData, SetterCmdDeleteProc, 0);
} else {
result = NsfAddObjectMethod(interp, (Nsf_Object *)object, methodName,
(Tcl_ObjCmdProc *)NsfSetterMethod,
setterClientData, SetterCmdDeleteProc, 0);
}
if (likely(result == TCL_OK)) {
Tcl_SetObjResult(interp, MethodHandleObj(object, cl == NULL, methodName));
} else {
SetterCmdDeleteProc(setterClientData);
}
return result;
}
/*
cmd "object::alloc" NsfObjectAllocCmd {
{-argName "class" -required 1 -type class}
{-argName "name" -required 1 -type tclobj}
{-argName "initcmd" -required 0 -type tclobj}
}
*/
static int
NsfObjectAllocCmd(Tcl_Interp *interp, NsfClass *class, Tcl_Obj *nameObj, Tcl_Obj *initcmdObj) {
Tcl_Obj *newNameObj = NULL;
int result;
assert(interp != NULL);
assert(class != NULL);
assert(nameObj != NULL);
/*
* If the provided name is empty, make a new symbol
*/
if (strlen(ObjStr(nameObj)) == 0) {
Tcl_DString ds, *dsPtr = &ds;
Tcl_DStringInit(dsPtr);
Tcl_DStringAppend(dsPtr, "::nsf::__#", 10);
NewTclCommand(interp, dsPtr);
newNameObj = Tcl_NewStringObj(Tcl_DStringValue(dsPtr), Tcl_DStringLength(dsPtr));
INCR_REF_COUNT(newNameObj);
Tcl_DStringFree(dsPtr);
nameObj = newNameObj;
}
/*fprintf(stderr, "trying to alloc <%s>\n", ObjStr(nameObj));*/
result = NsfCAllocMethod(interp, class, nameObj);
if (result == TCL_OK && initcmdObj) {
NsfObject *object;
Tcl_Obj *nameObj = Tcl_GetObjResult(interp);
INCR_REF_COUNT(nameObj);
if (unlikely(GetObjectFromObj(interp, nameObj, &object) != TCL_OK)) {
return NsfPrintError(interp, "couldn't find result of alloc");
}
result = NsfDirectDispatchCmd(interp, object, 1,
NsfGlobalObjs[NSF_EVAL],
1, &initcmdObj);
if (likely(result == TCL_OK)) {
Tcl_SetObjResult(interp,nameObj);
}
DECR_REF_COUNT(nameObj);
}
if (newNameObj != NULL) {
DECR_REF_COUNT(newNameObj);
}
return result;
}
/*
cmd "object::exists" NsfObjectExistsCmd {
{-argName "value" -required 1 -type tclobj}
}
*/
static int
NsfObjectExistsCmd(Tcl_Interp *interp, Tcl_Obj *valueObj) {
NsfObject *object;
assert(interp != NULL);
assert(valueObj != NULL);
/*
* Pass the object as Tcl_Obj, since we do not want to raise an error in
* case the object does not exist.
*/
Tcl_SetBooleanObj(Tcl_GetObjResult(interp), GetObjectFromObj(interp, valueObj, &object) == TCL_OK);
return TCL_OK;
}
/*
cmd "object::property" NsfObjectPropertyCmd {
{-argName "objectName" -required 1 -type object}
{-argName "objectproperty" -type "initialized|class|rootmetaclass|rootclass|volatile|slotcontainer|hasperobjectslots|keepcallerself|perobjectdispatch" -required 1}
{-argName "value" -required 0 -type tclobj}
}
*/
static int
NsfObjectPropertyCmd(Tcl_Interp *interp, NsfObject *object, int objectproperty, Tcl_Obj *valueObj) {
unsigned int flags = 0, allowSet = 0;
assert(interp != NULL);
assert(object != NULL);
switch (objectproperty) {
case ObjectpropertyInitializedIdx: flags = NSF_INIT_CALLED; allowSet = 1; break;
case ObjectpropertyClassIdx: flags = NSF_IS_CLASS; break;
case ObjectpropertyRootmetaclassIdx: flags = NSF_IS_ROOT_META_CLASS; break;
case ObjectpropertyVolatileIdx:
if (valueObj == NULL) {
Tcl_SetObjResult(interp,
NsfGlobalObjs[object->opt && object->opt->volatileVarName ? NSF_ONE : NSF_ZERO]);
return TCL_OK;
};
/* if value is provided, return the error below */
break;
case ObjectpropertyRootclassIdx: flags = NSF_IS_ROOT_CLASS; break;
case ObjectpropertySlotcontainerIdx: flags = NSF_IS_SLOT_CONTAINER; allowSet = 1; break;
case ObjectpropertyKeepcallerselfIdx: flags = NSF_KEEP_CALLER_SELF; allowSet = 1; break;
case ObjectpropertyPerobjectdispatchIdx: flags = NSF_PER_OBJECT_DISPATCH; allowSet = 1; break;
case ObjectpropertyHasperobjectslotsIdx: flags = NSF_HAS_PER_OBJECT_SLOTS; allowSet = 1; break;
}
if (valueObj != NULL) {
if (likely(allowSet)) {
int flagValue, result;
result = SetBooleanFlag(interp, &object->flags, flags, valueObj, &flagValue);
if (unlikely(result != TCL_OK)) {
return result;
}
if (objectproperty == ObjectpropertySlotcontainerIdx) {
assert(object->nsPtr);
if (flagValue != 0) {
/* turn on SlotContainerCmdResolver */
Tcl_SetNamespaceResolvers(object->nsPtr,
(Tcl_ResolveCmdProc *)SlotContainerCmdResolver,
NsColonVarResolver,
(Tcl_ResolveCompiledVarProc *)NULL);
} else {
/* turn off SlotContainerCmdResolver */
Tcl_SetNamespaceResolvers(object->nsPtr,
(Tcl_ResolveCmdProc *)NULL,
NsColonVarResolver,
(Tcl_ResolveCompiledVarProc *)NULL);
}
}
} else {
return NsfPrintError(interp, "object property is read only");
}
}
Tcl_SetObjResult(interp,
NsfGlobalObjs[(object->flags & flags) ?
NSF_ONE : NSF_ZERO]);
return TCL_OK;
}
/*
cmd "object::qualify" NsfObjectQualifyCmd {
{-argName "objectName" -required 1 -type tclobj}
}
*/
static int
NsfObjectQualifyCmd(Tcl_Interp *interp, Tcl_Obj *nameObj) {
const char *nameString = ObjStr(nameObj);
assert(interp != NULL);
assert(nameObj != NULL);
if (isAbsolutePath(nameString)) {
Tcl_SetObjResult(interp, nameObj);
} else {
Tcl_SetObjResult(interp, NameInNamespaceObj(nameString, CallingNameSpace(interp)));
}
return TCL_OK;
}
/*
cmd "objectsystem::create" NsfObjectSystemCreateCmd {
{-argName "rootClass" -required 1 -type tclobj}
{-argName "rootMetaClass" -required 1 -type tclobj}
{-argName "systemMethods" -required 0 -type tclobj}
}
*/
static int
NsfObjectSystemCreateCmd(Tcl_Interp *interp, Tcl_Obj *Object, Tcl_Obj *Class, Tcl_Obj *systemMethodsObj) {
NsfClass *theobj = NULL, *thecls = NULL;
Tcl_Obj *object, *class;
const char *objectName = ObjStr(Object);
const char *className = ObjStr(Class);
NsfObjectSystem *osPtr;
assert(interp != NULL);
assert(Object);
assert(Class);
osPtr = NEW(NsfObjectSystem);
memset(osPtr, 0, sizeof(NsfObjectSystem));
object = isAbsolutePath(objectName) ? Object :
NameInNamespaceObj(objectName, CallingNameSpace(interp));
class = isAbsolutePath(className) ? Class :
NameInNamespaceObj(className, CallingNameSpace(interp));
GetClassFromObj(interp, object, &theobj, 0);
GetClassFromObj(interp, class, &thecls, 0);
if (theobj || thecls) {
ObjectSystemFree(interp, osPtr);
NsfLog(interp, NSF_LOG_WARN, "Base class '%s' exists already; ignoring definition",
(theobj != NULL) ? objectName : className);
return TCL_OK;
}
if (systemMethodsObj != NULL) {
int oc, idx, result;
Tcl_Obj **ov;
if ((result = Tcl_ListObjGetElements(interp, systemMethodsObj, &oc, &ov)) == TCL_OK) {
int i;
if (oc % 2) {
ObjectSystemFree(interp, osPtr);
return NsfPrintError(interp, "system methods must be provided as pairs");
}
for (i = 0; i < oc; i += 2) {
Tcl_Obj *arg, **arg_ov;
int arg_oc = -1;
arg = ov[i+1];
result = Tcl_GetIndexFromObj(interp, ov[i], Nsf_SystemMethodOpts, "system method", 0, &idx);
if (likely(result == TCL_OK)) {
result = Tcl_ListObjGetElements(interp, arg, &arg_oc, &arg_ov);
}
if (unlikely(result != TCL_OK)) {
ObjectSystemFree(interp, osPtr);
return NsfPrintError(interp, "invalid system method '%s'", ObjStr(ov[i]));
} else if (arg_oc < 1 || arg_oc > 3) {
ObjectSystemFree(interp, osPtr);
return NsfPrintError(interp, "invalid system method argument '%s'", ObjStr(ov[i]), ObjStr(arg));
}
/*fprintf(stderr, "NsfCreateObjectSystemCmd [%d] = %p %s (max %d, given %d)\n",
idx, ov[i+1], ObjStr(ov[i+1]), NSF_s_set_idx, oc);*/
if (arg_oc == 1) {
osPtr->methods[idx] = arg;
} else { /* (arg_oc == 2) */
osPtr->methods[idx] = arg_ov[0];
osPtr->handles[idx] = arg_ov[1];
if (arg_oc == 3) {
int bool = 0;
Tcl_GetBooleanFromObj(interp, arg_ov[2], &bool);
osPtr->protected[idx] = bool;
}
INCR_REF_COUNT(osPtr->handles[idx]);
}
INCR_REF_COUNT(osPtr->methods[idx]);
}
} else {
ObjectSystemFree(interp, osPtr);
return NsfPrintError(interp, "provided system methods are not a proper list");
}
}
/*
* Create a basic object system with the basic root class Object and the
* basic metaclass Class, and store them in the RUNTIME STATE if successful.
*/
theobj = PrimitiveCCreate(interp, object, NULL, NULL);
thecls = PrimitiveCCreate(interp, class, NULL, NULL);
/* fprintf(stderr, "CreateObjectSystem created base classes \n"); */
/* check whether Object and Class creation was successful */
if (theobj == NULL || thecls == NULL) {
if (thecls != NULL) PrimitiveCDestroy(thecls);
if (theobj != NULL) PrimitiveCDestroy(theobj);
ObjectSystemFree(interp, osPtr);
return NsfPrintError(interp, "creation of object system failed");
}
theobj->osPtr = osPtr;
thecls->osPtr = osPtr;
osPtr->rootClass = theobj;
osPtr->rootMetaClass = thecls;
theobj->object.flags |= NSF_IS_ROOT_CLASS|NSF_INIT_CALLED;
thecls->object.flags |= NSF_IS_ROOT_META_CLASS|NSF_INIT_CALLED;
ObjectSystemAdd(interp, osPtr);
AddInstance((NsfObject *)theobj, thecls);
AddInstance((NsfObject *)thecls, thecls);
AddSuper(thecls, theobj);
if (NSF_DTRACE_OBJECT_ALLOC_ENABLED()) {
NSF_DTRACE_OBJECT_ALLOC(ObjectName((NsfObject *)theobj), ClassName(((NsfObject *)theobj)->cl));
NSF_DTRACE_OBJECT_ALLOC(ObjectName((NsfObject *)thecls), ClassName(((NsfObject *)thecls)->cl));
}
return TCL_OK;
}
/*
cmd my NsfMyCmd {
{-argName "-intrinsic" -nrargs 0}
{-argName "-local" -nrargs 0}
{-argName "-system" -nrargs 0}
{-argName "method" -required 1 -type tclobj}
{-argName "args" -type args}
}
*/
static int
NsfMyCmd(Tcl_Interp *interp,
int withIntrinsic, int withLocal, int withSystem,
Tcl_Obj *methodObj, int nobjc, Tcl_Obj *CONST nobjv[]) {
NsfObject *self = GetSelfObj(interp);
unsigned int flags;
int result;
assert(interp != NULL);
assert(methodObj != NULL);
if (unlikely(self == NULL)) {
return NsfNoCurrentObjectError(interp, method_definitions[NsfMyCmdIdx].methodName);
}
if ((withIntrinsic && withLocal)
|| (withIntrinsic && withSystem)
|| (withLocal && withSystem)) {
return NsfPrintError(interp, "flags '-intrinsic', '-local' and '-system' are mutual exclusive");
}
#if 0
/* TODO attempt to make "my" NRE-enabled, failed so far (crash in mixinInheritanceTest) */
NsfCallStackContent *cscPtr = CallStackGetTopFrame0(interp);
if (cscPtr == NULL || self != cscPtr->self) {
flags = NSF_CSC_IMMEDIATE;
} else {
flags = NsfImmediateFromCallerFlags(cscPtr->flags);
fprintf(stderr, "XXX MY %s.%s frame has flags %.6x -> next-flags %.6x\n",
ObjectName(self), ObjStr(methodObj), cscPtr->flags, flags);
}
if (withIntrinsic != 0) {flags |= NSF_CM_INTRINSIC_METHOD;}
if (withLocal != 0) {flags |= NSF_CM_LOCAL_METHOD;}
if (withSystem != 0) {flags |= NSF_CM_SYSTEM_METHOD;}
result = CallMethod(self, interp, methodObj, nobjc+2, nobjv, flags);
#else
flags = NSF_CSC_IMMEDIATE;
if (withIntrinsic != 0) {flags |= NSF_CM_INTRINSIC_METHOD;}
if (withLocal != 0) {flags |= NSF_CM_LOCAL_METHOD;}
if (withSystem != 0) {flags |= NSF_CM_SYSTEM_METHOD;}
result = CallMethod(self, interp, methodObj, nobjc+2, nobjv, flags);
#endif
return result;
}
/*
*----------------------------------------------------------------------
* NsfNextCmd --
*
* nsf::next calls the next shadowed method. It might get a single
* argument which is used as argument vector for that method. If no
* argument is provided, the argument vector of the last invocation
* is used.
*
* Results:
* Tcl return code
*
* Side effects:
* The invoked method might produce side effects
*
*----------------------------------------------------------------------
*/
/*
cmd next NsfNextCmd {
{-argName "arguments" -required 0 -type tclobj}
}
*/
static int
NsfNextCmd(Tcl_Interp *interp, Tcl_Obj *arguments) {
int freeArgumentVector, oc, nobjc = 0, result;
NsfCallStackContent *cscPtr = NULL;
const char *methodName = NULL;
Tcl_Obj **nobjv = NULL, **ov;
assert(interp != NULL);
if (arguments != NULL) {
/* Arguments were provided. */
int result = Tcl_ListObjGetElements(interp, arguments, &oc, &ov);
if (unlikely(result != TCL_OK)) {return result;}
} else {
/* No arguments were provided. */
oc = -1;
ov = NULL;
}
result = NextGetArguments(interp, oc, ov, &cscPtr, &methodName,
&nobjc, &nobjv, &freeArgumentVector);
if (likely(result == TCL_OK)) {
assert(cscPtr != NULL);
result = NextSearchAndInvoke(interp, methodName, nobjc, nobjv, cscPtr, freeArgumentVector);
}
return result;
}
/*
cmd nscopyvars NsfNSCopyVars {
{-argName "fromNs" -required 1 -type tclobj}
{-argName "toNs" -required 1 -type tclobj}
}
*/
static int
NsfNSCopyVarsCmd(Tcl_Interp *interp, Tcl_Obj *fromNs, Tcl_Obj *toNs) {
Tcl_Namespace *fromNsPtr = NULL, *toNsPtr;
Var *varPtr = NULL;
Tcl_HashSearch hSrch;
Tcl_HashEntry *hPtr;
TclVarHashTable *varTablePtr;
NsfObject *object, *destObject;
const char *destFullName;
Tcl_Obj *destFullNameObj;
Tcl_CallFrame frame, *framePtr = &frame;
Tcl_Obj *varNameObj = NULL;
assert(interp != NULL);
assert(fromNs != NULL);
assert(toNs != NULL);
TclGetNamespaceFromObj(interp, fromNs, &fromNsPtr);
if (fromNsPtr != NULL) {
if (TclGetNamespaceFromObj(interp, toNs, &toNsPtr) != TCL_OK) {
return NsfPrintError(interp, "CopyVars: Destination namespace %s does not exist",
ObjStr(toNs));
}
object = GetObjectFromString(interp, ObjStr(fromNs));
destFullName = toNsPtr->fullName;
destFullNameObj = Tcl_NewStringObj(destFullName, -1);
INCR_REF_COUNT(destFullNameObj);
varTablePtr = Tcl_Namespace_varTablePtr(fromNsPtr);
Tcl_PushCallFrame(interp, (Tcl_CallFrame *)framePtr, toNsPtr, 0);
} else {
NsfObject *newObject;
if (GetObjectFromObj(interp, fromNs, &object) != TCL_OK) {
return NsfPrintError(interp, "CopyVars: Origin object/namespace %s does not exist",
ObjStr(fromNs));
}
if (GetObjectFromObj(interp, toNs, &newObject) != TCL_OK) {
return NsfPrintError(interp, "CopyVars: Destination object/namespace %s does not exist",
ObjStr(toNs));
}
varTablePtr = object->varTablePtr;
destFullNameObj = newObject->cmdName;
destFullName = ObjStr(destFullNameObj);
}
destObject = GetObjectFromString(interp, destFullName);
/* copy all vars in the ns */
hPtr = (varTablePtr != NULL) ? Tcl_FirstHashEntry(TclVarHashTablePtr(varTablePtr), &hSrch) : NULL;
while (hPtr) {
GetVarAndNameFromHash(hPtr, &varPtr, &varNameObj);
INCR_REF_COUNT(varNameObj);
if (!TclIsVarUndefined(varPtr) && !TclIsVarLink(varPtr)) {
if (TclIsVarScalar(varPtr)) {
/*
* Copy scalar variables from the namespace, which might be
* either object or namespace variables.
*/
if (object != NULL) {
/* fprintf(stderr, "copy in obj %s var %s val '%s'\n", ObjectName(object), ObjStr(varNameObj),
ObjStr(TclVarValue(Tcl_Obj, varPtr, objPtr)));*/
Nsf_ObjSetVar2((Nsf_Object *)destObject, interp, varNameObj, NULL,
TclVarValue(Tcl_Obj, varPtr, objPtr), 0);
} else {
Tcl_ObjSetVar2(interp, varNameObj, NULL,
TclVarValue(Tcl_Obj, varPtr, objPtr),
TCL_NAMESPACE_ONLY);
}
} else {
if (TclIsVarArray(varPtr)) {
/* HERE!! PRE85 Why not [array get/set] based? Let the core iterate */
TclVarHashTable *aTable = TclVarValue(TclVarHashTable, varPtr, tablePtr);
Tcl_HashSearch ahSrch;
Tcl_HashEntry *ahPtr = (aTable != NULL) ? Tcl_FirstHashEntry(TclVarHashTablePtr(aTable), &ahSrch) : 0;
for (; ahPtr; ahPtr = Tcl_NextHashEntry(&ahSrch)) {
Tcl_Obj *eltNameObj;
Var *eltVar;
GetVarAndNameFromHash(ahPtr, &eltVar, &eltNameObj);
INCR_REF_COUNT(eltNameObj);
if (TclIsVarScalar(eltVar)) {
if (object != NULL) {
Nsf_ObjSetVar2((Nsf_Object *)destObject, interp, varNameObj, eltNameObj,
TclVarValue(Tcl_Obj, eltVar, objPtr), 0);
} else {
Tcl_ObjSetVar2(interp, varNameObj, eltNameObj,
TclVarValue(Tcl_Obj, eltVar, objPtr),
TCL_NAMESPACE_ONLY);
}
}
DECR_REF_COUNT(eltNameObj);
}
}
}
}
DECR_REF_COUNT(varNameObj);
hPtr = Tcl_NextHashEntry(&hSrch);
}
if (fromNsPtr != NULL) {
DECR_REF_COUNT(destFullNameObj);
Tcl_PopCallFrame(interp);
}
return TCL_OK;
}
/*
cmd parameter::info NsfParameterInfoCmd {
{-argName "parametersubcmd" -type "default|list|name|syntax|type" -required 1}
{-argName "parameterspec" -required 1 -type tclobj}
{-argName "varname" -required 0 -type tclobj}
}
*/
static int
NsfParameterInfoCmd(Tcl_Interp *interp, int parametersubcmd, Tcl_Obj *parameterspec, Tcl_Obj *varname) {
NsfParsedParam parsedParam;
Tcl_Obj *paramsObj, *listObj = NULL;
Nsf_Param *paramsPtr;
int result;
assert(interp != NULL);
assert(parameterspec != NULL);
if (parametersubcmd != ParametersubcmdDefaultIdx && varname != NULL) {
return NsfPrintError(interp, "parameter::info: provided third argument is only valid for querying defaults");
}
paramsObj = Tcl_NewListObj(1, ¶meterspec);
INCR_REF_COUNT(paramsObj);
result = ParamDefsParse(interp, NULL, paramsObj,
NSF_DISALLOWED_ARG_OBJECT_PARAMETER, 1,
&parsedParam);
DECR_REF_COUNT(paramsObj);
if (unlikely(result != TCL_OK)) {
return result;
}
assert(parsedParam.paramDefs);
paramsPtr = parsedParam.paramDefs->paramsPtr;
assert(paramsPtr != NULL);
/*
* Since we are passing in a parameter definition in Tcl syntax, and we want
* to extract information from that syntax, it make limited sense to provide
* a context object for virutal parameter expansion. At least, we do not
* allow this so far.
*/
switch (parametersubcmd) {
case ParametersubcmdDefaultIdx:
if (paramsPtr->defaultValue != NULL) {
if (varname != NULL) {
Tcl_Obj *resultObj = Tcl_ObjSetVar2(interp, varname, NULL,
paramsPtr->defaultValue,
TCL_LEAVE_ERR_MSG|TCL_PARSE_PART1);
if (resultObj == NULL) {
ParamDefsRefCountDecr(parsedParam.paramDefs);
return TCL_ERROR;
}
}
Tcl_SetObjResult(interp, NsfGlobalObjs[NSF_ONE]);
} else {
Tcl_SetObjResult(interp, NsfGlobalObjs[NSF_ZERO]);
}
break;
case ParametersubcmdListIdx:
listObj = ParamDefsList(interp, paramsPtr, NULL, NULL);
Tcl_SetObjResult(interp, listObj);
DECR_REF_COUNT2("paramDefsObj", listObj);
break;
case ParametersubcmdNameIdx:
listObj = ParamDefsNames(interp, paramsPtr, NULL, NULL);
Tcl_SetObjResult(interp, listObj);
DECR_REF_COUNT2("paramDefsObj", listObj);
break;
case ParametersubcmdSyntaxIdx:
listObj = NsfParamDefsSyntax(interp, paramsPtr, NULL, NULL);
Tcl_SetObjResult(interp, listObj);
DECR_REF_COUNT2("paramDefsObj", listObj);
break;
case ParametersubcmdTypeIdx:
if (paramsPtr->type != NULL) {
if (paramsPtr->converter == Nsf_ConvertToTclobj && paramsPtr->converterArg) {
Tcl_SetObjResult(interp, paramsPtr->converterArg);
} else {
if (paramsPtr->converter == Nsf_ConvertToObject || paramsPtr->converter == Nsf_ConvertToClass) {
const char *what = paramsPtr->type;
/*
* baseclass and metaclass are communicated via flags
*/
if (unlikely(paramsPtr->flags & NSF_ARG_BASECLASS)) {
what = "baseclass";
} else if (unlikely(paramsPtr->flags & NSF_ARG_METACLASS)) {
what = "metaclass";
}
/*
* The converterArg might contain a class for type checking
*/
if (paramsPtr->converterArg == NULL) {
Tcl_SetObjResult(interp, Tcl_NewStringObj(what, -1));
} else {
Tcl_SetObjResult(interp, paramsPtr->converterArg);
}
} else {
Tcl_SetObjResult(interp, Tcl_NewStringObj(paramsPtr->type, -1));
}
}
} else {
Tcl_SetObjResult(interp, NsfGlobalObjs[NSF_EMPTY]);
}
break;
}
ParamDefsRefCountDecr(parsedParam.paramDefs);
return TCL_OK;
}
/*
cmd parameter::cache::classinvalidate NsfParameterCacheClassInvalidateCmd {
{-argName "class" -required 1 -type class}
}
*/
static int
NsfParameterCacheClassInvalidateCmd(Tcl_Interp *interp, NsfClass *cl) {
assert(interp != NULL);
assert(cl != NULL);
/*
* First, increment the epoch in case we have a parsedParam. The
* classParamPtrEpoch is just used for PER_OBJECT_PARAMETER_CACHING
*/
#if defined(PER_OBJECT_PARAMETER_CACHING)
if (unlikely(cl->parsedParamPtr != NULL)) {
NsfClassParamPtrEpochIncr("NsfParameterCacheClassInvalidateCmd");
}
#endif
/*
* During shutdown, no new objects are created, therefore we do not need to
* to invalidate the cached parsedParamPtr of the classes.
*/
if (unlikely(RUNTIME_STATE(interp)->exitHandlerDestroyRound == NSF_EXITHANDLER_OFF)) {
NsfClasses *dependentSubClasses;
NsfClasses *clPtr;
/*
* Clear the cached parsedParam of the class and all its subclasses (the
* result of DependentSubClasses() contains the starting class). Furthermore,
* make a quick check, if any of the subclasses is a class mixin of some
* other class.
*/
dependentSubClasses = DependentSubClasses(cl);
if (dependentSubClasses != NULL) {
for (clPtr = dependentSubClasses; clPtr; clPtr = clPtr->nextPtr) {
NsfClass *subClass = clPtr->cl;
if (subClass->parsedParamPtr != NULL) {
ParsedParamFree(subClass->parsedParamPtr);
subClass->parsedParamPtr = NULL;
}
}
NsfClassListFree(dependentSubClasses);
}
}
return TCL_OK;
}
/*
cmd parameter::cache::objectinvalidate NsfParameterCacheObjectInvalidateCmd {
{-argName "object" -required 1 -type object}
}
*/
static int
NsfParameterCacheObjectInvalidateCmd(Tcl_Interp *interp, NsfObject *object) {
assert(interp != NULL);
assert(object != NULL);
#if defined(PER_OBJECT_PARAMETER_CACHING)
if (object->opt && object->opt->parsedParamPtr) {
/*fprintf(stderr, " %p %s invalidate %p\n", object,
ObjectName(object), object->opt->parsedParamPtr);*/
ParsedParamFree(object->opt->parsedParamPtr);
object->opt->parsedParamPtr = NULL;
}
#endif
return TCL_OK;
}
/*
cmd parameter::specs NsfParameterSpecsCmd {
{-argName "-configure" -nrargs 0 -required 0}
{-argName "-nonposargs" -nrargs 0 -required 0}
{-argName "slotobjs" -required 1 -type tclobj}
}
*/
static int
NsfParameterSpecsCmd(Tcl_Interp *interp, int withConfigure, int withNonposargs, Tcl_Obj *slotListObj) {
NsfTclObjList *objList = NULL, *elt;
Tcl_Obj **objv, *resultObj;
int result = TCL_OK, i, objc;
assert(interp != NULL);
assert(slotListObj != NULL);
if (Tcl_ListObjGetElements(interp, slotListObj, &objc, &objv) != TCL_OK) {
return NsfPrintError(interp, "NsfParameterSpecsCmd: invalid slot object list");
}
/*
* Iterate over the slot objects and obtain the position and the
* parameterSpec.
*/
for (i = 0; i < objc; i++) {
NsfObject *slotObject;
Tcl_Obj *positionObj, *specObj = NULL;
if (GetObjectFromObj(interp, objv[i], &slotObject) != TCL_OK) {
return NsfPrintError(interp, "objectparameter: slot element is not a next scripting object");
}
/*
* When withConfigure is provided, skip this parameter ...
* - when configure is not set
* - or configure == 0
*/
if (withConfigure != 0) {
int configure = 0;
Tcl_Obj *configureObj = Nsf_ObjGetVar2((Nsf_Object *)slotObject, interp,
NsfGlobalObjs[NSF_CONFIGURABLE], NULL, 0);
if (configureObj == NULL) continue;
Tcl_GetBooleanFromObj(interp, configureObj, &configure);
if (configure == 0) continue;
}
/*
* When withNonposargs is provided, skip this parameter ...
* - when positional == 1
*/
if (withNonposargs != 0) {
Tcl_Obj *positionalObj = Nsf_ObjGetVar2((Nsf_Object *)slotObject, interp,
NsfGlobalObjs[NSF_POSITIONAL], NULL, 0);
if (positionalObj != NULL) {
int positional = 0;
Tcl_GetBooleanFromObj(interp, positionalObj, &positional);
if (positional != 0) continue;
}
}
positionObj = Nsf_ObjGetVar2((Nsf_Object *)slotObject, interp,
NsfGlobalObjs[NSF_POSITION], NULL, 0);
specObj = Nsf_ObjGetVar2((Nsf_Object *)slotObject, interp,
NsfGlobalObjs[NSF_PARAMETERSPEC], NULL, 0);
if (specObj == NULL) {
result = CallMethod(slotObject, interp, NsfGlobalObjs[NSF_GET_PARAMETER_SPEC], 2, NULL,
NSF_CM_IGNORE_PERMISSIONS|NSF_CSC_IMMEDIATE);
if (unlikely(result != TCL_OK)) {
return NsfPrintError(interp, "objectparameter: %s %s returned error",
ObjectName(slotObject),
NsfGlobalStrings[NSF_GET_PARAMETER_SPEC]);
}
specObj = Tcl_GetObjResult(interp);
}
/*fprintf(stderr, "NsfParameterSpecsCmd slot obj = %s pos %s spec %s\n", ObjStr(objv[i]), (positionObj != NULL) ? ObjStr(positionObj) : "NONE", ObjStr(specObj) );*/
/*
* Add the spec to the list indicated by the position
*/
TclObjListAdd(interp, &objList, positionObj, specObj);
}
/*
* Fold the per-position lists into a flat result list
*/
resultObj = Tcl_NewListObj(0, NULL);
for (elt = objList; elt; elt = elt->nextPtr) {
Tcl_ListObjGetElements(interp, elt->payload, &objc, &objv);
for (i = 0; i < objc; i++) {
Tcl_ListObjAppendElement(interp, resultObj, objv[i]);
}
}
Tcl_SetObjResult(interp, resultObj);
if (objList != NULL) {
TclObjListFreeList(objList);
}
return result;
}
/*
cmd proc NsfProcCmd {
{-argName "-ad" -required 0 -nrargs 0 -type switch}
{-argName "-checkalways" -required 0 -nrargs 0 -type switch}
{-argName "procName" -required 1 -type tclobj}
{-argName "arguments" -required 1 -type tclobj}
{-argName "body" -required 1 -type tclobj}
}
*/
static int
NsfProcCmd(Tcl_Interp *interp, int with_ad, int with_checkAlways, Tcl_Obj *nameObj, Tcl_Obj *arguments, Tcl_Obj *body) {
NsfParsedParam parsedParam;
int result;
assert(interp != NULL);
assert(nameObj != NULL);
assert(arguments != NULL);
assert(body != NULL);
/*
* Parse argument list "arguments" to determine if we should provide
* nsf parameter handling.
*/
result = ParamDefsParse(interp, nameObj, arguments,
NSF_DISALLOWED_ARG_METHOD_PARAMETER, 0,
&parsedParam);
if (unlikely(result != TCL_OK)) {
return result;
}
if (parsedParam.paramDefs != NULL) {
/*
* We need parameter handling. In such cases, a thin C-based layer
* is added which handles the parameter passing and calls the proc
* later.
*/
result = NsfProcAdd(interp, &parsedParam, ObjStr(nameObj), body, with_ad, with_checkAlways);
} else {
/*
* No parameter handling needed. A plain Tcl proc is added.
*/
Tcl_Obj *ov[4];
ov[0] = NULL;
ov[1] = nameObj;
ov[2] = arguments;
ov[3] = body;
result = Tcl_ProcObjCmd(0, interp, 4, ov);
}
return result;
}
/*
cmd relation::get NsfRelationGetCmd {
{-argName "object" -type object}
{-argName "relationtype" -required 1 -type "object-mixin|class-mixin|object-filter|class-filter|class|superclass|rootclass"}
}
*/
static int
NsfRelationGetCmd(Tcl_Interp *interp, NsfObject *object, int relationtype) {
return NsfRelationSetCmd(interp, object, relationtype, NULL);
}
/*
*----------------------------------------------------------------------
* NsfRelationClassMixinsSet --
*
* Set class mixins; the main reason for the factored out semantics is that
* it can allow to undo/redo the operations in case of a failure.
*
* Results:
* Tcl result code.
*
* Side effects:
* class mixins are set, various kinds of invlidations.
*
*----------------------------------------------------------------------
*/
static int NsfRelationClassMixinsSet(Tcl_Interp *interp, NsfClass *cl, Tcl_Obj *valueObj, int oc, Tcl_Obj **ov)
nonnull(1) nonnull(2) nonnull(3);
static int
NsfRelationClassMixinsSet(Tcl_Interp *interp, NsfClass *cl, Tcl_Obj *valueObj, int oc, Tcl_Obj **ov) {
NsfCmdList *newMixinCmdList = NULL, *cmds;
NsfClasses *subClasses;
NsfClassOpt *clopt;
int i;
assert(interp != NULL);
assert(cl != NULL);
assert(valueObj != NULL);
for (i = 0; i < oc; i++) {
if (MixinAdd(interp, &newMixinCmdList, ov[i], cl->object.cl) != TCL_OK) {
CmdListFree(&newMixinCmdList, GuardDel);
return TCL_ERROR;
}
}
clopt = cl->opt;
assert(clopt != NULL);
if (clopt->classMixins != NULL) {
if (clopt->classMixins != NULL) RemoveFromClassMixinsOf(cl->object.id, clopt->classMixins);
CmdListFree(&clopt->classMixins, GuardDel);
}
subClasses = DependentSubClasses(cl);
MixinInvalidateObjOrders(interp, cl, subClasses);
/*
* Since methods of mixed in classes may be used as filters, we have to
* invalidate the filters as well.
*/
if (FiltersDefined(interp) > 0) {
FilterInvalidateObjOrders(interp, subClasses);
}
NsfClassListFree(subClasses);
/*
* Now register the specified mixins.
*/
clopt->classMixins = newMixinCmdList;
/*
* Finally, update classMixinOfs
*/
for (cmds = newMixinCmdList; cmds; cmds = cmds->nextPtr) {
NsfObject *nObject = NsfGetObjectFromCmdPtr(cmds->cmdPtr);
if (nObject != NULL) {
NsfClassOpt *nclopt = NsfRequireClassOpt((NsfClass *) nObject);
CmdListAddSorted(&nclopt->isClassMixinOf, cl->object.id, NULL);
} else {
NsfLog(interp, NSF_LOG_WARN,
"Problem registering %s as a class mixin of %s\n",
ObjStr(valueObj), ClassName(cl));
}
}
return TCL_OK;
}
/*
cmd relation::set NsfRelationSetCmd {
{-argName "object" -type object}
{-argName "relationtype" -required 1 -type "object-mixin|class-mixin|object-filter|class-filter|class|superclass|rootclass"}
{-argName "value" -required 0 -type tclobj}
}
*/
static int
NsfRelationSetCmd(Tcl_Interp *interp, NsfObject *object,
int relationtype, Tcl_Obj *valueObj) {
int oc; Tcl_Obj **ov;
NsfClass *cl = NULL;
NsfObjectOpt *objopt = NULL;
NsfClassOpt *clopt = NULL, *nclopt = NULL;
int i;
assert(interp != NULL);
assert(object != NULL);
/*fprintf(stderr, "NsfRelationSetCmd %s rel=%d val='%s'\n",
ObjectName(object), relationtype, (valueObj != NULL) ? ObjStr(valueObj) : "NULL");*/
if (relationtype == RelationtypeClass_mixinIdx ||
relationtype == RelationtypeClass_filterIdx) {
if (NsfObjectIsClass(object)) {
cl = (NsfClass *)object;
} else {
/* fall back to per-object case */
relationtype = (relationtype == RelationtypeClass_mixinIdx) ?
RelationtypeObject_mixinIdx :
RelationtypeObject_filterIdx ;
}
}
switch (relationtype) {
case RelationtypeObject_filterIdx:
case RelationtypeObject_mixinIdx:
if (valueObj == NULL) {
objopt = object->opt;
switch (relationtype) {
case RelationtypeObject_mixinIdx:
return (objopt != NULL) ? MixinInfo(interp, objopt->objMixins, NULL, 1, NULL) : TCL_OK;
case RelationtypeObject_filterIdx:
return (objopt != NULL) ? FilterInfo(interp, objopt->objFilters, NULL, 1, 0) : TCL_OK;
}
}
if (Tcl_ListObjGetElements(interp, valueObj, &oc, &ov) != TCL_OK) {
return TCL_ERROR;
}
objopt = NsfRequireObjectOpt(object);
break;
case RelationtypeClass_mixinIdx:
case RelationtypeClass_filterIdx:
if (valueObj == NULL) {
clopt = cl->opt;
switch (relationtype) {
case RelationtypeClass_mixinIdx:
return (clopt != NULL) ? MixinInfo(interp, clopt->classMixins, NULL, 1, NULL) : TCL_OK;
case RelationtypeClass_filterIdx:
return (clopt != NULL) ? FilterInfo(interp, clopt->classFilters, NULL, 1, 0) : TCL_OK;
}
}
if (Tcl_ListObjGetElements(interp, valueObj, &oc, &ov) != TCL_OK) {
return TCL_ERROR;
}
clopt = NsfRequireClassOpt(cl);
break;
case RelationtypeSuperclassIdx:
if (!NsfObjectIsClass(object)) {
return NsfObjErrType(interp, "superclass", object->cmdName, "class", NULL);
}
cl = (NsfClass *)object;
if (valueObj == NULL) {
return ListSuperClasses(interp, cl, NULL, 0);
}
if (Tcl_ListObjGetElements(interp, valueObj, &oc, &ov) != TCL_OK) {
return TCL_ERROR;
}
return SuperclassAdd(interp, cl, oc, ov, valueObj);
case RelationtypeClassIdx:
if (valueObj == NULL) {
Tcl_SetObjResult(interp, object->cl->object.cmdName);
return TCL_OK;
}
GetClassFromObj(interp, valueObj, &cl, 1);
if (cl == NULL) return NsfObjErrType(interp, "class", valueObj, "a class", NULL);
i = ChangeClass(interp, object, cl);
if (i == TCL_OK) {
Tcl_SetObjResult(interp, object->cl->object.cmdName);
}
return i;
case RelationtypeRootclassIdx:
{
NsfClass *metaClass = NULL;
if (!NsfObjectIsClass(object)) {
return NsfObjErrType(interp, "rootclass", object->cmdName, "class", NULL);
}
cl = (NsfClass *)object;
if (valueObj == NULL) {
return NsfPrintError(interp, "metaclass must be specified as third argument");
}
GetClassFromObj(interp, valueObj, &metaClass, 0);
if (metaClass == NULL) return NsfObjErrType(interp, "rootclass", valueObj, "class", NULL);
cl->object.flags |= NSF_IS_ROOT_CLASS;
metaClass->object.flags |= NSF_IS_ROOT_META_CLASS;
return TCL_OK;
/* todo:
need to remove these properties?
allow to delete a class system at runtime?
*/
}
}
switch (relationtype) {
case RelationtypeObject_mixinIdx:
{
NsfCmdList *newMixinCmdList = NULL, *cmds;
/*
* Add every mixin class
*/
for (i = 0; i < oc; i++) {
if (MixinAdd(interp, &newMixinCmdList, ov[i], object->cl->object.cl) != TCL_OK) {
CmdListFree(&newMixinCmdList, GuardDel);
return TCL_ERROR;
}
}
if (objopt->objMixins != NULL) {
NsfCmdList *cmdlist, *del;
/*
* Delete from old isObjectMixinOf lists
*/
for (cmdlist = objopt->objMixins; cmdlist; cmdlist = cmdlist->nextPtr) {
cl = NsfGetClassFromCmdPtr(cmdlist->cmdPtr);
clopt = (cl != NULL) ? cl->opt : NULL;
if (clopt != NULL) {
del = CmdListFindCmdInList(object->id, clopt->isObjectMixinOf);
if (del != NULL) {
/* fprintf(stderr, "Removing object %s from isObjectMixinOf of class %s\n",
ObjectName(object), ObjStr(NsfGetClassFromCmdPtr(cmdlist->cmdPtr)->object.cmdName)); */
del = CmdListRemoveFromList(&clopt->isObjectMixinOf, del);
CmdListDeleteCmdListEntry(del, GuardDel);
}
}
}
CmdListFree(&objopt->objMixins, GuardDel);
}
/*
* Invalidate per-object infos
*/
NsfParameterCacheObjectInvalidateCmd(interp, object);
object->flags &= ~NSF_MIXIN_ORDER_VALID;
/*
* Since mixin procs may be used as filters -> we have to invalidate
* filters as well.
*/
object->flags &= ~NSF_FILTER_ORDER_VALID;
/*
* Now register the specified mixins.
*/
objopt->objMixins = newMixinCmdList;
for (cmds = newMixinCmdList; cmds; cmds = cmds->nextPtr) {
NsfObject *nObject = NsfGetObjectFromCmdPtr(cmds->cmdPtr);
if (nObject != NULL) {
nclopt = NsfRequireClassOpt((NsfClass *) nObject);
CmdListAddSorted(&nclopt->isObjectMixinOf, object->id, NULL);
} else {
NsfLog(interp, NSF_LOG_WARN,
"Problem registering %s as a object mixin of %s\n",
ObjStr(valueObj), ObjectName(object));
}
}
MixinComputeDefined(interp, object);
FilterComputeDefined(interp, object);
break;
}
case RelationtypeObject_filterIdx:
{
NsfCmdList *newFilterCmdList = NULL;
for (i = 0; i < oc; i ++) {
if (FilterAdd(interp, &newFilterCmdList, ov[i], object, NULL) != TCL_OK) {
CmdListFree(&newFilterCmdList, GuardDel);
return TCL_ERROR;
}
}
if (objopt->objFilters != NULL) {
CmdListFree(&objopt->objFilters, GuardDel);
}
object->flags &= ~NSF_FILTER_ORDER_VALID;
objopt->objFilters = newFilterCmdList;
/*FilterComputeDefined(interp, object);*/
break;
}
case RelationtypeClass_mixinIdx:
if (NsfRelationClassMixinsSet(interp, cl, valueObj, oc, ov) != TCL_OK) {
return TCL_ERROR;
}
break;
case RelationtypeClass_filterIdx:
{
NsfCmdList *newFilterCmdList = NULL;
for (i = 0; i < oc; i ++) {
if (FilterAdd(interp, &newFilterCmdList, ov[i], NULL, cl) != TCL_OK) {
CmdListFree(&newFilterCmdList, GuardDel);
return TCL_ERROR;
}
}
if (clopt->classFilters != NULL) {
CmdListFree(&clopt->classFilters, GuardDel);
}
if (FiltersDefined(interp) > 0) {
NsfClasses *subClasses = DependentSubClasses(cl);
if (subClasses != NULL) {
FilterInvalidateObjOrders(interp, subClasses);
NsfClassListFree(subClasses);
}
}
clopt->classFilters = newFilterCmdList;
break;
}
}
/*
* Return on success the final setting
*/
NsfRelationSetCmd(interp, object, relationtype, NULL);
return TCL_OK;
}
/*
cmd current NsfCurrentCmd {
{-argName "currentoption" -required 0 -type "proc|method|methodpath|object|class|activelevel|args|activemixin|calledproc|calledmethod|calledclass|callingproc|callingmethod|callingclass|callinglevel|callingobject|filterreg|isnextcall|next"}
}
*/
static int
NsfCurrentCmd(Tcl_Interp *interp, int selfoption) {
NsfObject *object = GetSelfObj(interp);
NsfCallStackContent *cscPtr;
Tcl_CallFrame *framePtr;
int result = TCL_OK;
assert(interp != NULL);
if (selfoption == 0 || selfoption == CurrentoptionObjectIdx) {
if (likely(object != NULL)) {
Tcl_SetObjResult(interp, object->cmdName);
return TCL_OK;
} else {
return NsfNoCurrentObjectError(interp, NULL);
}
}
if (unlikely(object == NULL && selfoption != CurrentoptionCallinglevelIdx)) {
return NsfNoCurrentObjectError(interp, NULL);
}
switch (selfoption) {
case CurrentoptionMethodIdx: /* fall through */
case CurrentoptionProcIdx:
cscPtr = CallStackGetTopFrame0(interp);
if (cscPtr != NULL) {
const char *procName = Tcl_GetCommandName(interp, cscPtr->cmdPtr);
Tcl_SetObjResult(interp, Tcl_NewStringObj(procName, -1));
} else {
return NsfPrintError(interp, "can't find proc");
}
break;
case CurrentoptionMethodpathIdx:
cscPtr = CallStackGetTopFrame0(interp);
Tcl_SetObjResult(interp, NsfMethodNamePath(interp,
CallStackGetTclFrame(interp, NULL, 1),
Tcl_GetCommandName(interp, cscPtr->cmdPtr)));
break;
case CurrentoptionClassIdx: /* class subcommand */
cscPtr = CallStackGetTopFrame0(interp);
Tcl_SetObjResult(interp, cscPtr && cscPtr->cl ?
cscPtr->cl->object.cmdName : NsfGlobalObjs[NSF_EMPTY]);
break;
case CurrentoptionActivelevelIdx:
Tcl_SetObjResult(interp, ComputeLevelObj(interp, ACTIVE_LEVEL));
break;
case CurrentoptionArgsIdx: {
cscPtr = CallStackGetTopFrame(interp, &framePtr);
if (cscPtr != NULL) {
int nobjc;
Tcl_Obj **nobjv;
if (cscPtr->objv != NULL) {
nobjc = cscPtr->objc;
nobjv = (Tcl_Obj **)cscPtr->objv;
} else {
nobjc = Tcl_CallFrame_objc(framePtr);
nobjv = (Tcl_Obj **)Tcl_CallFrame_objv(framePtr);
}
Tcl_SetObjResult(interp, Tcl_NewListObj(nobjc-1, nobjv+1));
} else {
return NsfPrintError(interp, "can't find proc");
}
break;
}
case CurrentoptionActivemixinIdx: {
NsfObject *object = NULL;
if (RUNTIME_STATE(interp)->currentMixinCmdPtr) {
object = NsfGetObjectFromCmdPtr(RUNTIME_STATE(interp)->currentMixinCmdPtr);
}
Tcl_SetObjResult(interp, (object != NULL) ? object->cmdName : NsfGlobalObjs[NSF_EMPTY]);
break;
}
case CurrentoptionCalledprocIdx:
case CurrentoptionCalledmethodIdx:
cscPtr = CallStackFindActiveFilter(interp);
if (cscPtr != NULL) {
Tcl_SetObjResult(interp,
Tcl_NewStringObj(MethodName(cscPtr->filterStackEntry->calledProc), -1));
} else {
result = NsfPrintError(interp, "called from outside of a filter");
}
break;
case CurrentoptionCalledclassIdx: {
NsfClass *cl = FindCalledClass(interp, object);
Tcl_SetObjResult(interp, (cl != NULL) ? cl->object.cmdName : NsfGlobalObjs[NSF_EMPTY]);
break;
}
case CurrentoptionCallingmethodIdx:
case CurrentoptionCallingprocIdx: {
Tcl_Obj *resultObj;
cscPtr = NsfCallStackFindLastInvocation(interp, 1, &framePtr);
if (cscPtr && cscPtr->cmdPtr) {
resultObj = NsfMethodNamePath(interp,
CallStackGetTclFrame(interp, framePtr, 1),
Tcl_GetCommandName(interp, cscPtr->cmdPtr));
} else {
resultObj = NsfGlobalObjs[NSF_EMPTY];
}
Tcl_SetObjResult(interp, resultObj);
break;
}
case CurrentoptionCallingclassIdx:
cscPtr = NsfCallStackFindLastInvocation(interp, 1, NULL);
Tcl_SetObjResult(interp, cscPtr && cscPtr->cl ? cscPtr->cl->object.cmdName :
NsfGlobalObjs[NSF_EMPTY]);
break;
case CurrentoptionCallinglevelIdx:
if (object == NULL) {
Tcl_SetIntObj(Tcl_GetObjResult(interp), 1);
} else {
Tcl_SetObjResult(interp, ComputeLevelObj(interp, CALLING_LEVEL));
}
break;
case CurrentoptionCallingobjectIdx:
cscPtr = NsfCallStackFindLastInvocation(interp, 1, NULL);
Tcl_SetObjResult(interp, (cscPtr != NULL) ? cscPtr->self->cmdName : NsfGlobalObjs[NSF_EMPTY]);
break;
case CurrentoptionFilterregIdx:
cscPtr = CallStackFindActiveFilter(interp);
if (cscPtr != NULL) {
Tcl_SetObjResult(interp, FilterFindReg(interp, object, cscPtr->cmdPtr));
} else {
result = NsfPrintError(interp, "called from outside of a filter");
}
break;
case CurrentoptionIsnextcallIdx: {
(void)CallStackGetTopFrame(interp, &framePtr);
framePtr = CallStackNextFrameOfType(Tcl_CallFrame_callerPtr(framePtr),
FRAME_IS_NSF_METHOD|FRAME_IS_NSF_CMETHOD);
cscPtr = (framePtr != NULL) ? Tcl_CallFrame_clientData(framePtr) : NULL;
Tcl_SetBooleanObj(Tcl_GetObjResult(interp),
(cscPtr && (cscPtr->flags & NSF_CSC_CALL_IS_NEXT)));
break;
}
case CurrentoptionNextmethodIdx:
result = FindSelfNext(interp);
break;
}
return result;
}
/*
cmd self NsfSelfCmd {
}
*/
static int
NsfSelfCmd(Tcl_Interp *interp) {
NsfObject *object = GetSelfObj(interp);
assert(interp != NULL);
if (likely(object != NULL)) {
Tcl_SetObjResult(interp, object->cmdName);
return TCL_OK;
} else {
return NsfNoCurrentObjectError(interp, NULL);
}
}
/*
cmd var::exists NsfVarExistsCmd {
{-argName "-array" -required 0 -nrargs 0}
{-argName "object" -required 1 -type object}
{-argName "varName" -required 1}
}
*/
static int
NsfVarExistsCmd(Tcl_Interp *interp, int withArray, NsfObject *object, const char *varName) {
unsigned int flags =
NSF_VAR_TRIGGER_TRACE|NSF_VAR_REQUIRE_DEFINED|
((withArray != 0) ? NSF_VAR_ISARRAY : 0);
assert(interp != NULL);
assert(object != NULL);
assert(varName != NULL);
if (CheckVarName(interp, varName) != TCL_OK) {
return TCL_ERROR;
}
Tcl_SetIntObj(Tcl_GetObjResult(interp), VarExists(interp, object, varName, NULL, flags));
return TCL_OK;
}
/*
cmd var::get NsfVarGetCmd {
{-argName "-array" -required 0 -nrargs 0}
{-argName "object" -required 1 -type object}
{-argName "varName" -required 1 -type tclobj}
}
*/
static int
NsfVarGetCmd(Tcl_Interp *interp, int withArray,
NsfObject *object, Tcl_Obj *varName) {
return NsfVarSetCmd(interp, withArray, object, varName, NULL);
}
/*
cmd var::import NsfVarImportCmd {
{-argName "object" -type object}
{-argName "args" -type args}
}
*/
static int NsfVarImport(Tcl_Interp *interp, NsfObject *object, const char *cmdName, int objc, Tcl_Obj *CONST objv[]) nonnull(1) nonnull(2) nonnull(3) nonnull(5);
static int
NsfVarImport(Tcl_Interp *interp, NsfObject *object, const char *cmdName, int objc, Tcl_Obj *CONST objv[]) {
int i, result = TCL_OK;
assert(interp != NULL);
assert(object != NULL);
assert(cmdName != NULL);
assert(objv != NULL);
for (i = 0; i < objc && result == TCL_OK; i++) {
Tcl_Obj **ov;
int oc;
/*fprintf(stderr, "ListGetElements %p %s\n", objv[i], ObjStr(objv[i]));*/
if ((result = Tcl_ListObjGetElements(interp, objv[i], &oc, &ov)) == TCL_OK) {
Tcl_Obj *varName = NULL, *alias = NULL;
switch (oc) {
case 0: {varName = objv[i]; break;}
case 1: {varName = ov[0]; break;}
case 2: {varName = ov[0]; alias = ov[1]; break;}
}
if (likely(varName != NULL)) {
result = ImportInstVarIntoCurrentScope(interp, cmdName, object, varName, alias);
} else {
assert(objv[i]);
result = NsfPrintError(interp, "invalid variable specification '%s'", ObjStr(objv[i]));
}
}
}
return result;
}
static int
NsfVarImportCmd(Tcl_Interp *interp, NsfObject *object, int objc, Tcl_Obj *CONST objv[]) {
assert(interp != NULL);
assert(object != NULL);
return NsfVarImport(interp, object, "importvar", objc, objv);
}
/*
cmd var::set NsfVarSetCmd {
{-argName "-array" -required 0 -nrargs 0}
{-argName "object" -required 1 -type object}
{-argName "varName" -required 1 -type tclobj}
{-argName "value" -required 0 -type tclobj}
}
*/
static int
NsfVarSetCmd(Tcl_Interp *interp, int withArray,
NsfObject *object, Tcl_Obj *varName, Tcl_Obj *valueObj) {
assert(interp != NULL);
assert(object != NULL);
assert(varName != NULL);
if (CheckVarName(interp, ObjStr(varName)) != TCL_OK) {
return TCL_ERROR;
}
if (withArray != 0) {
return SetInstArray(interp, object, varName, valueObj);
} else {
return SetInstVar(interp, object, varName, valueObj);
}
}
/*
cmd var::unset NsfVarUnsetCmd {
{-argName "-nocomplain" -required 0 -nrargs 0}
{-argName "object" -required 1 -type object}
{-argName "varName" -required 1 -type tclobj}
}
*/
static int
NsfVarUnsetCmd(Tcl_Interp *interp, int withNocomplain, NsfObject *object, Tcl_Obj *varNameObj) {
const char *varName = ObjStr(varNameObj);
assert(interp != NULL);
assert(object != NULL);
assert(varNameObj != NULL);
if (CheckVarName(interp, varName) != TCL_OK) {
return TCL_ERROR;
}
return UnsetInstVar(interp, withNocomplain, object, varName);
}
/***********************************************************************
* End generated Next Scripting commands
***********************************************************************/
/*
* Parameter support functions
*/
typedef struct NsfParamWrapper {
Nsf_Param *paramPtr;
int refCount;
int canFree;
} NsfParamWrapper;
static Tcl_DupInternalRepProc ParamDupInteralRep;
static Tcl_FreeInternalRepProc ParamFreeInternalRep;
static Tcl_UpdateStringProc ParamUpdateString;
static void ParamUpdateString(Tcl_Obj *objPtr) nonnull(1);
static void ParamDupInteralRep(Tcl_Obj *srcPtr, Tcl_Obj *UNUSED(dupPtr)) nonnull(1);
static void ParamFreeInternalRep(register Tcl_Obj *objPtr) nonnull(1);
static int ParamSetFromAny(Tcl_Interp *interp, register Tcl_Obj *objPtr) nonnull(1) nonnull(2);
static int ParamSetFromAny2(Tcl_Interp *interp, const char *varNamePrefix,
int configureParameter, register Tcl_Obj *objPtr)
nonnull(1) nonnull(2) nonnull(4);
static void
ParamUpdateString(Tcl_Obj *objPtr) {
assert(objPtr != NULL);
Tcl_Panic("%s of type %s should not be called", "updateStringProc",
objPtr->typePtr->name);
}
static void
ParamDupInteralRep(Tcl_Obj *srcPtr, Tcl_Obj *UNUSED(dupPtr)) {
assert(srcPtr != NULL);
Tcl_Panic("%s of type %s should not be called", "dupStringProc",
srcPtr->typePtr->name);
}
static Tcl_ObjType paramObjType = {
"nsfParam", /* name */
ParamFreeInternalRep, /* freeIntRepProc */
ParamDupInteralRep, /* dupIntRepProc */
ParamUpdateString, /* updateStringProc */
ParamSetFromAny /* setFromAnyProc */
};
static void
ParamFreeInternalRep(
register Tcl_Obj *objPtr) /* Param structure object with internal
* representation to free. */
{
NsfParamWrapper *paramWrapperPtr = (NsfParamWrapper *)objPtr->internalRep.twoPtrValue.ptr1;
assert(objPtr != NULL);
if (paramWrapperPtr != NULL) {
/* fprintf(stderr, "ParamFreeInternalRep freeing wrapper %p paramPtr %p refCount %dcanFree %d\n",
paramWrapperPtr, paramWrapperPtr->paramPtr, paramWrapperPtr->refCount,
paramWrapperPtr->canFree);*/
if (paramWrapperPtr->canFree == 1) {
ParamsFree(paramWrapperPtr->paramPtr);
FREE(NsfParamWrapper, paramWrapperPtr);
} else {
paramWrapperPtr->refCount--;
}
}
}
/*
*----------------------------------------------------------------------
* ParamSetFromAny2 --
*
* Convert the second argument argument (e.g. "x:integer") into the
* internal representation of a Tcl_Obj of the type parameter. The
* conversion is performed by the usual ParamParse() function, used
* e.g. for the parameter passing for arguments.
*
* Results:
* Result code.
*
* Side effects:
* Converted internal rep of Tcl_Obj
*
*----------------------------------------------------------------------
*/
static int
ParamSetFromAny2(
Tcl_Interp *interp, /* Used for error reporting if not NULL. */
const char *varNamePrefix, /* shows up as varName in error message */
int allowParameter, /* allow object parameters */
register Tcl_Obj *objPtr) /* The object to convert. */
{
Tcl_Obj *fullParamObj = Tcl_NewStringObj(varNamePrefix, -1);
int result, possibleUnknowns = 0, plainParams = 0, nrNonposArgs = 0;
NsfParamWrapper *paramWrapperPtr = NEW(NsfParamWrapper);
assert(interp != NULL);
assert(varNamePrefix != NULL);
assert(objPtr != NULL);
paramWrapperPtr->paramPtr = ParamsNew(1);
paramWrapperPtr->refCount = 1;
paramWrapperPtr->canFree = 0;
Tcl_AppendLimitedToObj(fullParamObj, ObjStr(objPtr), -1, INT_MAX, NULL);
INCR_REF_COUNT(fullParamObj);
result = ParamParse(interp, NsfGlobalObjs[NSF_VALUECHECK], fullParamObj,
(allowParameter == 1) ? NSF_DISALLOWED_ARG_OBJECT_PARAMETER : NSF_DISALLOWED_ARG_VALUECHECK,
paramWrapperPtr->paramPtr, &possibleUnknowns,
&plainParams, &nrNonposArgs);
/*
* We treat currently unknown user level converters as error.
*/
if (paramWrapperPtr->paramPtr->flags & NSF_ARG_CURRENTLY_UNKNOWN) {
result = TCL_ERROR;
}
if (likely(result == TCL_OK)) {
/*
* In success cases, the memory allocated by this function is freed via
* the tcl_obj type.
*/
paramWrapperPtr->paramPtr->flags |= NSF_ARG_UNNAMED;
if (*(paramWrapperPtr->paramPtr->name) == 'r') {
paramWrapperPtr->paramPtr->flags |= NSF_ARG_IS_RETURNVALUE;
}
TclFreeIntRep(objPtr);
objPtr->internalRep.twoPtrValue.ptr1 = (void *)paramWrapperPtr;
objPtr->internalRep.twoPtrValue.ptr2 = NULL;
objPtr->typePtr = ¶mObjType;
} else {
/*
* In error cases, free manually memory allocated by this function.
*/
ParamsFree(paramWrapperPtr->paramPtr);
FREE(NsfParamWrapper, paramWrapperPtr);
}
DECR_REF_COUNT(fullParamObj);
return result;
}
static int
ParamSetFromAny(
Tcl_Interp *interp, /* Used for error reporting if not NULL. */
register Tcl_Obj *objPtr) /* The object to convert. */
{
assert(interp != NULL);
assert(objPtr != NULL);
return ParamSetFromAny2(interp, "value:", 0, objPtr);
}
/*
*----------------------------------------------------------------------
* GetObjectParameterDefinition --
*
* Obtain the parameter definitions for an object by calling the method
* "__objectparameter" if the value is not cached already. Caching is
* performed on the class, the cached values are used in case there are no
* object-specific slots.
*
* Results:
* Tcl return code, parsed structure in last argument
*
* Side effects:
* Updates potentially cl->parsedParamPtr
*
*----------------------------------------------------------------------
*/
static int
ComputeParameterDefinition(Tcl_Interp *interp, Tcl_Obj *procNameObj,
NsfObject *object, NsfClass *class,
NsfParsedParam *parsedParamPtr) {
int result = TCL_OK;
Tcl_Obj *methodObj;
NsfObject *self;
if (object != NULL) {
methodObj = NsfMethodObj(object, NSF_o_configureparameter_idx);
self = object;
} else {
assert(class != NULL);
self = &class->object;
methodObj = NsfMethodObj(self, NSF_c_configureparameter_idx);
}
if (methodObj != NULL) {
/*fprintf(stderr, "calling %s %s\n", ObjectName(self), ObjStr(methodObj));*/
result = CallMethod(self, interp, methodObj, 2, NULL,
NSF_CM_IGNORE_PERMISSIONS|NSF_CSC_IMMEDIATE);
if (likely(result == TCL_OK)) {
Tcl_Obj *rawConfArgs = Tcl_GetObjResult(interp);
/*fprintf(stderr, ".... rawConfArgs for %s => '%s'\n",
ObjectName(self), ObjStr(rawConfArgs));*/
INCR_REF_COUNT(rawConfArgs);
/*
* Parse the string representation to obtain the internal
* representation.
*/
result = ParamDefsParse(interp, procNameObj, rawConfArgs,
NSF_DISALLOWED_ARG_OBJECT_PARAMETER, 1,
parsedParamPtr);
if (likely(result == TCL_OK)) {
NsfParsedParam *ppDefPtr = NEW(NsfParsedParam);
ppDefPtr->paramDefs = parsedParamPtr->paramDefs;
ppDefPtr->possibleUnknowns = parsedParamPtr->possibleUnknowns;
if (class != NULL) {
assert(class->parsedParamPtr == NULL);
class->parsedParamPtr = ppDefPtr;
#if defined(PER_OBJECT_PARAMETER_CACHING)
} else if (object != NULL) {
NsfObjectOpt *opt = NsfRequireObjectOpt(object);
if (object->opt->parsedParamPtr != NULL) {
NsfParameterCacheObjectInvalidateCmd(interp, object);
}
opt->parsedParamPtr = ppDefPtr;
opt->classParamPtrEpoch = RUNTIME_STATE(interp)->classParamPtrEpoch;
/*fprintf(stderr, "set obj param for obj %p %s epoch %d ppDefPtr %p\n",
object, ObjectName(object), opt->classParamPtrEpoch, ppDefPtr);*/
#endif
}
if (ppDefPtr->paramDefs != NULL) {
ParamDefsRefCountIncr(ppDefPtr->paramDefs);
}
}
DECR_REF_COUNT(rawConfArgs);
}
}
return result;
}
static int
GetObjectParameterDefinition(Tcl_Interp *interp, Tcl_Obj *procNameObj,
NsfObject *object, NsfClass *class,
NsfParsedParam *parsedParamPtr) {
int result = TCL_OK;
assert(interp != NULL);
assert(procNameObj != NULL);
assert(parsedParamPtr != NULL);
parsedParamPtr->paramDefs = NULL;
parsedParamPtr->possibleUnknowns = 0;
if (class == NULL) {
assert(object != NULL);
if ((object->flags & NSF_HAS_PER_OBJECT_SLOTS)
|| (object->opt && object->opt->objMixins)
) {
/*
* We have object-specific parameters. Do not use the per-class cache,
* and do not save the results in the per-class cache
*/
/*fprintf(stderr, "per-object configure obj %s flags %.6x\n",
ObjectName(object), object->flags);*/
} else {
class = object->cl;
}
}
/*
* Parameter definitions are cached in the class, for which
* instances are created. The parameter definitions are flushed in
* the following situations:
*
* a) on class cleanup: ParsedParamFree(cl->parsedParamPtr)
* b) on class structure changes,
* c) when class-mixins are added,
* d) when new slots are defined,
* e) when slots are removed
*
* When slot defaults or types are changed, the slots have to
* perform a manual "::nsf::invalidateobjectparameter $domain".
*/
/*
* Check, if there is already a parameter definition available for
* creating objects of this class.
*/
if (likely(class && class->parsedParamPtr)) {
NsfParsedParam *clParsedParamPtr = class->parsedParamPtr;
parsedParamPtr->paramDefs = clParsedParamPtr->paramDefs;
parsedParamPtr->possibleUnknowns = clParsedParamPtr->possibleUnknowns;
result = TCL_OK;
#if defined(PER_OBJECT_PARAMETER_CACHING)
} else if (object && object->opt && object->opt->parsedParamPtr &&
object->opt->classParamPtrEpoch == RUNTIME_STATE(interp)->classParamPtrEpoch) {
NsfParsedParam *objParsedParamPtr = object->opt->parsedParamPtr;
/*fprintf(stderr, "reuse obj param for obj %p %s paramPtr %p\n",
object, ObjectName(object), objParsedParamPtr);*/
parsedParamPtr->paramDefs = objParsedParamPtr->paramDefs;
parsedParamPtr->possibleUnknowns = objParsedParamPtr->possibleUnknowns;
result = TCL_OK;
#endif
} else {
/*
* There is no parameter definition available, get a new one in
* the the string representation.
*/
result = ComputeParameterDefinition(interp, procNameObj,
object, class,
parsedParamPtr);
}
return result;
}
/*
*----------------------------------------------------------------------
* ParameterCheck --
*
* Check the provided valueObj against the parameter specification provided
* in the second argument (paramObjPtr), when doCheckArguments is true. This
* function is used e.g. by nsf::is, where only the right hand side of a
* parameter specification (after the colon) is specified. The argument
* Name (before the colon in a parameter spec) is provided via
* argNamePrefix. The converted parameter structure is returned optionally
* via the last argument.
*
* Results:
* Tcl return code, parsed structure in last argument
*
* Side effects:
* Converts potentially tcl_obj type of paramObjPtr
*
*----------------------------------------------------------------------
*/
static int
ParameterCheck(Tcl_Interp *interp, Tcl_Obj *paramObjPtr, Tcl_Obj *valueObj,
const char *argNamePrefix, int doCheckArguments,
int isNamed, int doConfigureParameter,
Nsf_Param **paramPtrPtr) {
Nsf_Param *paramPtr;
NsfParamWrapper *paramWrapperPtr;
Tcl_Obj *outObjPtr = NULL;
ClientData checkedData;
int result;
unsigned int flags = 0;
assert(interp != NULL);
assert(paramObjPtr != NULL);
assert(valueObj != NULL);
/*fprintf(stderr, "ParameterCheck %s value %p %s\n",
ObjStr(paramObjPtr), valueObj, ObjStr(valueObj));*/
if (paramObjPtr->typePtr == ¶mObjType) {
paramWrapperPtr = (NsfParamWrapper *) paramObjPtr->internalRep.twoPtrValue.ptr1;
} else {
/*
* We could use in principle Tcl_ConvertToType(..., ¶mObjType) instead
* of checking the type manually, but we want to pass the argNamePrefix
* explicitly.
*/
result = ParamSetFromAny2(interp, argNamePrefix, doConfigureParameter, paramObjPtr);
if (likely(result == TCL_OK)) {
paramWrapperPtr = (NsfParamWrapper *) paramObjPtr->internalRep.twoPtrValue.ptr1;
} else {
return NsfPrintError(interp, "invalid value constraints \"%s\"", ObjStr(paramObjPtr));
}
}
paramPtr = paramWrapperPtr->paramPtr;
if (paramPtrPtr != NULL) *paramPtrPtr = paramPtr;
if (isNamed != 0) {
paramPtr->flags &= ~NSF_ARG_UNNAMED;
}
result = ArgumentCheck(interp, valueObj, paramPtr, doCheckArguments, &flags, &checkedData, &outObjPtr);
/*fprintf(stderr, "ParameterCheck paramPtr %p final refCount of wrapper %d can free %d flags %.6x\n",
paramPtr, paramWrapperPtr->refCount, paramWrapperPtr->canFree, flags);*/
assert(paramWrapperPtr->refCount > 0);
paramWrapperPtr->canFree = 1;
if (flags & NSF_PC_MUST_DECR) {
DECR_REF_COUNT2("valueObj", outObjPtr);
}
return result;
}
/***********************************************************************
* Begin Object Methods
***********************************************************************/
/*
objectMethod autoname NsfOAutonameMethod {
{-argName "-instance"}
{-argName "-reset"}
{-argName "name" -required 1 -type tclobj}
}
*/
static int
NsfOAutonameMethod(Tcl_Interp *interp, NsfObject *object, int withInstance, int withReset,
Tcl_Obj *nameObj) {
Tcl_Obj *autonamedObj;
assert(interp != NULL);
assert(object != NULL);
assert(nameObj != NULL);
autonamedObj = AutonameIncr(interp, nameObj, object, withInstance, withReset);
if (autonamedObj != NULL) {
Tcl_SetObjResult(interp, autonamedObj);
DECR_REF_COUNT2("autoname", autonamedObj);
return TCL_OK;
}
return NsfPrintError(interp, "autoname failed. Probably format string (with %%) was not well-formed");
}
/*
objectMethod class NsfOClassMethod {
{-argName "class" -required 0 -type tclobj}
}
*/
static int
NsfOClassMethod(Tcl_Interp *interp, NsfObject *object, Tcl_Obj *classObj) {
assert(interp != NULL);
assert(object != NULL);
return NsfRelationSetCmd(interp, object, RelationtypeClassIdx, classObj);
}
/*
objectMethod cleanup NsfOCleanupMethod {
}
*/
static int
NsfOCleanupMethod(Tcl_Interp *interp, NsfObject *object) {
NsfClass *cl = NsfObjectToClass(object);
Tcl_Obj *savedNameObj;
int softrecreate;
assert(interp != NULL);
assert(object != NULL);
#if defined(OBJDELETION_TRACE)
fprintf(stderr, "+++ NsfOCleanupMethod\n");
#endif
PRINTOBJ("NsfOCleanupMethod", object);
savedNameObj = object->cmdName;
INCR_REF_COUNT(savedNameObj);
/* save and pass around softrecreate*/
softrecreate = object->flags & NSF_RECREATE && RUNTIME_STATE(interp)->doSoftrecreate;
CleanupDestroyObject(interp, object, softrecreate);
CleanupInitObject(interp, object, object->cl, object->nsPtr, softrecreate);
if (cl != NULL) {
CleanupDestroyClass(interp, cl, softrecreate, 1);
CleanupInitClass(interp, cl, cl->nsPtr, softrecreate, 1);
}
DECR_REF_COUNT(savedNameObj);
return TCL_OK;
}
/*
objectMethod configure NsfOConfigureMethod {
{-argName "args" -type allargs}
}
*/
static NsfObject* GetSlotObject(Tcl_Interp *interp, Tcl_Obj *slotObj) nonnull(1) nonnull(2);
static NsfObject*
GetSlotObject(Tcl_Interp *interp, Tcl_Obj *slotObj) {
NsfObject *slotObject = NULL;
assert(interp != NULL);
assert(slotObj != NULL);
if (unlikely(GetObjectFromObj(interp, slotObj, &slotObject) != TCL_OK || slotObject == NULL)) {
NsfPrintError(interp, "couldn't resolve slot object %s", ObjStr(slotObj));
}
return slotObject;
}
static int
NsfOConfigureMethod(Tcl_Interp *interp, NsfObject *object, int objc, Tcl_Obj *CONST objv[], Tcl_Obj *objv0) {
int result, i;
NsfParsedParam parsedParam;
Nsf_Param *paramPtr;
NsfParamDefs *paramDefs;
Tcl_Obj *newValue, *initMethodObj;
const char *initString;
ParseContext pc;
CallFrame frame, *framePtr = &frame, *uplevelVarFramePtr;
assert(interp != NULL);
assert(object != NULL);
assert(objv != NULL);
#if 0
fprintf(stderr, "NsfOConfigureMethod %s.%s flags %.6x oc %2d", ObjectName(object), ObjStr(objv0), object->flags, objc);
for(i = 0; i < objc; i++) {fprintf(stderr, " [%d]=%s,", i, ObjStr(objv[i]));}
fprintf(stderr, "\n");
#endif
/* Get the object parameter definition */
assert(objv0 != NULL);
result = GetObjectParameterDefinition(interp, objv0, object, NULL, &parsedParam);
if (result != TCL_OK || parsedParam.paramDefs == NULL) {
/*fprintf(stderr, "... nothing to do for method %s\n", ObjStr(objv0));*/
return result;
}
/*
* Get the initMethodObj/initString outside the loop iterating over the
* arguments.
*/
if (CallDirectly(interp, object, NSF_o_init_idx, &initMethodObj)) {
initString = NULL;
} else {
initString = ObjStr(initMethodObj);
}
/*
* The effective call site of the configure() method (e.g., a proc or a
* method) can result from up-leveling the object creation procedure;
* therefore, the *effective* call site can deviate from the *declaring*
* call site (e.g. as in XOTcl2's unknown method). In such a scenario, the
* configure() dispatch finds itself in a particular call-stack
* configuration: The top-most frame reflects the declaring call site
* (interp->framePtr), while the effective call site (interp->varFramePtr)
* is identified by a lower call-stack level.
*
* Since configure pushes an object frame (for accessing the instance
* variables) and sometimes a CMETHOD frame (for method invocations) we
* record a) whether there was a preceding uplevel (identifiable through
* deviating interp->framePtr and interp->varFramePtr) and, in case, b) the
* ruling variable frame context. The preserved call-frame reference can
* later be used to restore the uplevel'ed call frame context.
*/
uplevelVarFramePtr =
(Tcl_CallFrame *)Tcl_Interp_varFramePtr(interp) != Tcl_Interp_framePtr(interp)
? Tcl_Interp_varFramePtr(interp)
: NULL;
/*
* Push frame to allow for [self] and make instance variables of obj
* accessible as locals.
*/
Nsf_PushFrameObj(interp, object, framePtr);
/* Process the actual arguments based on the parameter definitions */
paramDefs = parsedParam.paramDefs;
ParamDefsRefCountIncr(paramDefs);
result = ProcessMethodArguments(&pc, interp, object,
NSF_ARGPARSE_START_ZERO, paramDefs,
NsfGlobalObjs[NSF_CONFIGURE], objc, objv);
if (unlikely(result != TCL_OK)) {
Nsf_PopFrameObj(interp, framePtr);
goto configure_exit;
}
/*
* At this point, the arguments are tested to be valid (according to the
* parameter definitions) and the defaults are set. Now we have to apply the
* arguments (mostly setting instance variables).
*/
#if defined(CONFIGURE_ARGS_TRACE)
fprintf(stderr, "*** POPULATE OBJ '%s': nr of parsed args %d\n", ObjectName(object), pc.objc);
#endif
for (i = 1, paramPtr = paramDefs->paramsPtr; paramPtr->name; paramPtr++, i++) {
/*
* Set the new value always when the new value was specified (was not
* taken from the default). When we take the default, we do not overwrite
* already existing values (which might have been set via parameter
* alias).
*/
/*fprintf(stderr, "[%d] param %s, object init called %d is default %d value = '%s' nrArgs %d\n",
i, paramPtr->name, (object->flags & NSF_INIT_CALLED),
(pc.flags[i-1] & NSF_PC_IS_DEFAULT),
ObjStr(pc.full_objv[i]), paramPtr->nrArgs);*/
if ((pc.flags[i-1] & NSF_PC_IS_DEFAULT)) {
/*
* Object parameter method calls (when the flag
* NSF_ARG_METHOD_INVOCATION is set) do not set instance variables, so
* we do not have to check for existing variables.
*/
if ((paramPtr->flags & NSF_ARG_METHOD_INVOCATION) == 0) {
Tcl_Obj *varObj = Tcl_ObjGetVar2(interp, paramPtr->nameObj, NULL, TCL_PARSE_PART1);
if (varObj != NULL) {
/*
* The value exists already, ignore this parameter.
*/
/*fprintf(stderr, "a variable for %s exists already, "
"ignore param flags %.6x valueObj %p\n",
paramPtr->name, paramPtr->flags, pc.full_objv[i]);*/
continue;
}
} else if (object->flags & NSF_INIT_CALLED) {
/*
* The object is already initialized. Don't use the default, since it
* might change part of the state back to the original default. This
* might happen, when e.g. configure is called on a class manually,
* where "superclass" has a default.
*/
/*fprintf(stderr, "%s skip default %s in configure\n",
ObjectName(object), ObjStr(pc.full_objv[i]));*/
continue;
}
} else if (unlikely(paramPtr->flags & NSF_ARG_REQUIRED
&& pc.full_objv[i] == NsfGlobalObjs[NSF___UNKNOWN__])) {
/* Previous versions contained a test for
* (object->flags & NSF_INIT_CALLED)
*
* to perform required testing just for in the non-initialized state. We
* switched in 2.0b5 to checking for the existance of the associated
* instance variable, which works under the assumption that the instance
* variable has the same name and that e.g. an required alias parameter
* sets this variable either. Similar assumption is in the default
* handling. Future versions might use a more general handling of the
* parameter states.
*/
Tcl_Obj *varObj = Tcl_ObjGetVar2(interp, paramPtr->nameObj, NULL, TCL_PARSE_PART1);
if (varObj == NULL) {
Tcl_Obj *paramDefsObj = NsfParamDefsSyntax(interp, paramDefs->paramsPtr, object, NULL);
NsfPrintError(interp, "required argument '%s' is missing, should be:\n\t%s%s%s %s", (paramPtr->nameObj != NULL) ? ObjStr(paramPtr->nameObj) : paramPtr->name, (pc.object != NULL) ? ObjectName(pc.object) : "", (pc.object != NULL) ? " " : "",
ObjStr(pc.full_objv[0]),
ObjStr(paramDefsObj));
DECR_REF_COUNT2("paramDefsObj", paramDefsObj);
Nsf_PopFrameObj(interp, framePtr);
result = TCL_ERROR;
goto configure_exit;
}
}
newValue = pc.full_objv[i];
/*fprintf(stderr, " new Value of %s = [%d] %p '%s', type %s addr %p\n",
ObjStr(paramPtr->nameObj), i,
newValue, (newValue != NULL) ? ObjStr(newValue) : "(null)", paramPtr->type,
&(pc.full_objv[i]));*/
/*
* Handling slot initialize
*/
if (paramPtr->flags & NSF_ARG_SLOTINITIALIZE) {
NsfObject *slotObject = GetSlotObject(interp, paramPtr->slotObj);
if (likely(slotObject != NULL)) {
Tcl_Obj *ov[1];
ov[0] = paramPtr->nameObj;
result = NsfCallMethodWithArgs(interp, (Nsf_Object *)slotObject, NsfGlobalObjs[NSF_INITIALIZE],
object->cmdName, 2, ov,
NSF_CSC_IMMEDIATE|NSF_CM_IGNORE_PERMISSIONS);
}
if (unlikely(result != TCL_OK)) {
/*
* The error message was set either by GetSlotObject or by ...CallMethod...
*/
Nsf_PopFrameObj(interp, framePtr);
goto configure_exit;
}
}
/*
* Special setter methods for invoking methods calls; handles types
* "cmd", "initcmd", "alias" and "forward".
*/
if ((paramPtr->flags & NSF_ARG_METHOD_INVOCATION)
) {
int consuming = (*paramPtr->name == '-' || paramPtr->nrArgs > 0);
if (consuming && newValue == NsfGlobalObjs[NSF___UNKNOWN__]) {
/*
* In the case we have a consuming parameter, but we have no value
* provided and not default, there is no reason to call the invocation
* parameter.
*/
/*fprintf(stderr, "%s consuming nrargs %d no value\n", paramPtr->name, paramPtr->nrArgs);*/
continue;
}
if ((paramPtr->flags & NSF_ARG_INITCMD)) {
if (paramPtr->defaultValue != NULL) {
/*
* The "defaultValue" holds the initcmd to be executed
*/
Tcl_Obj *varObj = Tcl_ObjGetVar2(interp, NsfGlobalObjs[NSF_ARRAY_INITCMD],
paramPtr->nameObj, 0);
if (varObj == NULL) {
/*
* The variable is not set. Therefore, we assume, we have to
* execute the initcmd. On success, we note the execution in the NSF_ARRAY_INITCMD
* variable (usually __initcmd(name))
*/
result = ParameterMethodDispatch(interp, object, paramPtr, paramPtr->defaultValue,
uplevelVarFramePtr, initString,
(Tcl_Obj **)&objv[pc.lastObjc],
objc - pc.lastObjc);
if (unlikely(result != TCL_OK)) {
Nsf_PopFrameObj(interp, framePtr);
goto configure_exit;
}
Tcl_ObjSetVar2(interp, NsfGlobalObjs[NSF_ARRAY_INITCMD],
paramPtr->nameObj, Tcl_NewIntObj(1), 0);
}
} else {
/*
* we could consider to require a default
*/
}
/*
* if we have a new actual value, proceed to setvars
*/
if ((pc.flags[i-1] & NSF_PC_IS_DEFAULT) == 0) {
goto setvars;
}
continue;
}
/*
* lastObjc points to the first "unprocessed" argument, the argument before should be valid, when lastObjc > 1
*/
if (pc.lastObjc > 1) {
assert(ISOBJ(objv[pc.lastObjc-1]));
}
result = ParameterMethodDispatch(interp, object, paramPtr, newValue,
uplevelVarFramePtr, initString,
(Tcl_Obj **)&objv[pc.lastObjc],
objc - pc.lastObjc);
if (unlikely(result != TCL_OK)) {
Nsf_PopFrameObj(interp, framePtr);
goto configure_exit;
}
continue;
}
setvars:
if (newValue == NsfGlobalObjs[NSF___UNKNOWN__]) {
/*
* Nothing to do, we have a value setter, but no value is specified and
* no default was provided.
*/
continue;
}
/*
* Set the instance variable unless the last argument of the
* definition is varArgs.
*/
if (i < paramDefs->nrParams || pc.varArgs == 0) {
#if defined(CONFIGURE_ARGS_TRACE)
fprintf(stderr, "*** %s SET %s '%s' // %p\n",
ObjectName(object), ObjStr(paramPtr->nameObj), ObjStr(newValue), paramPtr->slotObj);
#endif
/*
* Actually set instance variable with the provided value or default
* value. In case, explicit invocation of the setter is needed, we call the method, which
* is typically a forwarder to the slot object.
*/
if (paramPtr->flags & NSF_ARG_SLOTSET) {
NsfObject *slotObject = GetSlotObject(interp, paramPtr->slotObj);
if (likely(slotObject != NULL)) {
Tcl_Obj *ov[2];
Tcl_Obj *methodObj = NsfMethodObj(object, NSF_s_set_idx);
ov[0] = (paramPtr->method != NULL) ? paramPtr->method : paramPtr->nameObj;
ov[1] = newValue;
/*fprintf(stderr, "SLOTSET %s %s %s %s %s idx %d %p\n", ObjectName(slotObject),
ObjStr(NsfGlobalObjs[NSF_SET]), ObjStr(object->cmdName),
ObjStr(paramPtr->nameObj), ObjStr(newValue),
NSF_s_set_idx, methodObj);*/
result = NsfCallMethodWithArgs(interp, (Nsf_Object *)slotObject, (methodObj != NULL) ? methodObj : NsfGlobalObjs[NSF_SLOT_SET],
object->cmdName, 3, ov, NSF_CSC_IMMEDIATE);
}
if (unlikely(result != TCL_OK)) {
/*
* The error message was set either by GetSlotObject or by ...CallMethod...
*/
Nsf_PopFrameObj(interp, framePtr);
goto configure_exit;
}
} else {
Tcl_ObjSetVar2(interp, paramPtr->nameObj, NULL, newValue, TCL_LEAVE_ERR_MSG|TCL_PARSE_PART1);
}
}
}
Nsf_PopFrameObj(interp, framePtr);
configure_exit:
ParamDefsRefCountDecr(paramDefs);
ParseContextRelease(&pc);
if (likely(result == TCL_OK)) {
Tcl_ResetResult(interp);
}
return result;
}
/*
objectMethod cget NsfOCgetMethod {
{-argName "name" -type tclobj -required 1}
}
*/
static int
NsfOCgetMethod(Tcl_Interp *interp, NsfObject *object, Tcl_Obj *nameObj) {
int result, found = 0;
NsfParsedParam parsedParam;
Nsf_Param const *paramPtr;
NsfParamDefs *paramDefs;
CallFrame frame, *framePtr = &frame, *uplevelVarFramePtr;
const char *nameString = ObjStr(nameObj);
assert(interp != NULL);
assert(object != NULL);
assert(nameObj != NULL);
/*
* Get the object parameter definition
*/
result = GetObjectParameterDefinition(interp, NsfGlobalObjs[NSF_EMPTY],
object, NULL, &parsedParam);
if (unlikely(result != TCL_OK)) {
return result;
}
/*
* GetObjectParameterDefinition() was returning TCL_OK, the paramdefs have
* to be set.
*/
assert(parsedParam.paramDefs);
/*
* We do not stack a plain stack fraom NSF_CSC_TYPE_PLAIN here, as we do in
* NsfOConfigureMethod (but maybe we have to for full compatibility TODO:
* check and compar with configure stack setup). Therefore we pass NULL as
* cscPtr to ParameterMethodForwardDispatch).
*/
/*
* The uplevel handling is exactly the same as in NsfOConfigureMethod() and
* is needed, when methods are called, which perform an upvar.
*/
uplevelVarFramePtr =
(Tcl_CallFrame *)Tcl_Interp_varFramePtr(interp) != Tcl_Interp_framePtr(interp)
? Tcl_Interp_varFramePtr(interp)
: NULL;
/*
* Push frame to allow invocations of [self] and make instance variables of
* obj accessible as locals.
*/
Nsf_PushFrameObj(interp, object, framePtr);
paramDefs = parsedParam.paramDefs;
ParamDefsRefCountIncr(paramDefs);
/*
* Does provided value start with a dash?
*/
if (*nameString == '-') {
/*
* Skip leading parameters from the definition, which are no nonpos args
* (very unlikely).
*/
for (paramPtr = paramDefs->paramsPtr;
paramPtr->name && *paramPtr->name != '-';
paramPtr++);
/*
* Perform the lookup from the next group.
*/
if (unlikely(NsfParamDefsNonposLookup(interp, nameString, paramPtr, ¶mPtr) != TCL_OK)) {
result = TCL_ERROR;
goto cget_exit;
} else {
found = (paramPtr != NULL);
}
}
if (found == 0) {
result = NsfPrintError(interp, "cget: unknown configure parameter %s", nameString);
goto cget_exit;
}
/*fprintf(stderr, "arg %s found, flags %.8x\n", nameString, paramPtr->flags);*/
/*
* Check for slot invocation
*/
if (paramPtr->slotObj != NULL) {
NsfObject *slotObject = GetSlotObject(interp, paramPtr->slotObj);
Tcl_Obj *methodObj = NsfMethodObj(object, NSF_s_get_idx);
Tcl_Obj *ov[1];
/*
* Get instance variable via slot.
*/
if (uplevelVarFramePtr != NULL) {
Tcl_Interp_varFramePtr(interp) = uplevelVarFramePtr;
}
ov[0] = (paramPtr->method != NULL) ? paramPtr->method : paramPtr->nameObj;
/*fprintf(stderr, "SLOTGET %s idx %d %p\n", ObjectName(slotObject),
NSF_s_get_idx, methodObj);*/
result = NsfCallMethodWithArgs(interp, (Nsf_Object *)slotObject, (methodObj != NULL) ? methodObj : NsfGlobalObjs[NSF_SLOT_GET],
object->cmdName, 2, ov, NSF_CSC_IMMEDIATE);
goto cget_exit;
}
/*
* We do NOT have a slot
*/
if (found && paramPtr->flags & NSF_ARG_METHOD_CALL) {
if (paramPtr->flags & NSF_ARG_ALIAS) {
/*
* It is a parameter associated with an aliased method. Invoke the
* method without an argument.
*/
Tcl_Obj *methodObj = (paramPtr->method != NULL) ? paramPtr->method : paramPtr->nameObj;
if (uplevelVarFramePtr != NULL) {
Tcl_Interp_varFramePtr(interp) = uplevelVarFramePtr;
}
result = CallMethod(object, interp, methodObj, 2, NULL, NSF_CSC_IMMEDIATE);
} else {
/*
* Must be NSF_ARG_FORWARD
*/
assert(paramPtr->flags & NSF_ARG_FORWARD);
/* since we have no cscPtr, we provide NULL */
result = ParameterMethodForwardDispatch(interp, object,
paramPtr, NULL, NULL /* cscPtr */);
}
} else {
/*
* Must be a parameter associated with a variable
*/
unsigned int flags = (object->nsPtr) ? TCL_LEAVE_ERR_MSG|TCL_NAMESPACE_ONLY : TCL_LEAVE_ERR_MSG;
Tcl_Obj *resultObj = Tcl_ObjGetVar2(interp, paramPtr->nameObj, NULL, flags);
if (resultObj != NULL) {
/*
* The value exists
*/
Tcl_SetObjResult(interp, resultObj);
}
}
cget_exit:
Nsf_PopFrameObj(interp, framePtr);
ParamDefsRefCountDecr(paramDefs);
return result;
}
/*
objectMethod destroy NsfODestroyMethod {
}
*/
static int
NsfODestroyMethod(Tcl_Interp *interp, NsfObject *object) {
PRINTOBJ("NsfODestroyMethod", object);
assert(interp != NULL);
assert(object != NULL);
/*
* Provide protection against destroy on base classes.
*/
if (unlikely(IsBaseClass(object))) {
if (RUNTIME_STATE(interp)->exitHandlerDestroyRound != NSF_EXITHANDLER_ON_SOFT_DESTROY) {
return NsfPrintError(interp, "cannot destroy base class %s", ObjectName(object));
}
}
/*fprintf(stderr,"NsfODestroyMethod %p %s flags %.6x activation %d cmd %p cmd->flags %.6x\n",
object, ((Command *)object->id)->flags == 0 ? ObjectName(object) : "(deleted)",
object->flags, object->activationCount, object->id, ((Command *)object->id)->flags);*/
/*
* NSF_DESTROY_CALLED might be set already be DispatchDestroyMethod(),
* the implicit destroy calls. It is necessary to set it here for
* the explicit destroy calls in the script, which reach the
* Object->destroy.
*/
if ((object->flags & NSF_DESTROY_CALLED) == 0) {
object->flags |= NSF_DESTROY_CALLED;
/*fprintf(stderr, "NsfODestroyMethod %p sets DESTROY_CALLED %.6x\n", object, object->flags);*/
}
object->flags |= NSF_DESTROY_CALLED_SUCCESS;
if (likely((object->flags & NSF_DURING_DELETE) == 0)) {
int result;
Tcl_Obj *methodObj;
/*fprintf(stderr, " call dealloc on %p %s\n", object,
((Command *)object->id)->flags == 0 ? ObjectName(object) : "(deleted)");*/
if (CallDirectly(interp, &object->cl->object, NSF_c_dealloc_idx, &methodObj)) {
NSF_PROFILE_TIME_DATA;
NSF_PROFILE_CALL(interp, &object->cl->object, Nsf_SystemMethodOpts[NSF_c_dealloc_idx]);
result = DoDealloc(interp, object);
NSF_PROFILE_EXIT(interp, &object->cl->object, Nsf_SystemMethodOpts[NSF_c_dealloc_idx]);
} else {
result = NsfCallMethodWithArgs(interp, (Nsf_Object *)object->cl, methodObj,
object->cmdName, 1, NULL,
NSF_CSC_IMMEDIATE|NSF_CM_IGNORE_PERMISSIONS);
if (unlikely(result != TCL_OK)) {
/*
* In case, the call of the dealloc method has failed above (e.g. NS_DYING),
* we have to call dealloc manually, otherwise we have a memory leak
*/
/*fprintf(stderr, "*** dealloc failed for %p %s flags %.6x, retry\n",
object, ObjectName(object), object->flags);*/
result = DoDealloc(interp, object);
}
}
return result;
} else {
#if defined(OBJDELETION_TRACE)
fprintf(stderr, " Object->destroy already during delete, don't call dealloc %p\n", object);
#endif
}
return TCL_OK;
}
/*
objectMethod exists NsfOExistsMethod {
{-argName "varName" -required 1}
}
*/
static int
NsfOExistsMethod(Tcl_Interp *interp, NsfObject *object, const char *var) {
assert(interp != NULL);
assert(object != NULL);
assert(var != NULL);
Tcl_SetIntObj(Tcl_GetObjResult(interp),
VarExists(interp, object, var, NULL,
NSF_VAR_TRIGGER_TRACE|NSF_VAR_REQUIRE_DEFINED));
return TCL_OK;
}
/*
objectMethod filterguard NsfOFilterGuardMethod {
{-argName "filter" -required 1}
{-argName "guard" -required 1 -type tclobj}
}
*/
static int
NsfOFilterGuardMethod(Tcl_Interp *interp, NsfObject *object, const char *filter, Tcl_Obj *guardObj) {
NsfObjectOpt *opt;
assert(interp != NULL);
assert(object != NULL);
assert(filter != NULL);
assert(guardObj != NULL);
opt = object->opt;
if (opt && opt->objFilters) {
NsfCmdList *h = CmdListFindNameInList(interp, filter, opt->objFilters);
if (h != NULL) {
if (h->clientData != NULL) {
GuardDel((NsfCmdList *) h);
}
GuardAdd(h, guardObj);
object->flags &= ~NSF_FILTER_ORDER_VALID;
return TCL_OK;
}
}
return NsfPrintError(interp, "filterguard: can't find filter %s on %s",
filter, ObjectName(object));
}
/*
objectMethod instvar NsfOInstvarMethod {
{-argName "args" -type allargs}
}
*/
static int
NsfOInstvarMethod(Tcl_Interp *interp, NsfObject *object, int objc, Tcl_Obj *CONST objv[]) {
callFrameContext ctx = {0, NULL, NULL};
int result;
assert(interp != NULL);
assert(object != NULL);
if (object->filterStack || object->mixinStack) {
CallStackUseActiveFrame(interp, &ctx);
}
if (unlikely(Tcl_Interp_varFramePtr(interp) == NULL)) {
CallStackRestoreSavedFrames(interp, &ctx);
return NsfPrintError(interp, "instvar used on %s, but call-stack is not in procedure scope",
ObjectName(object));
}
result = NsfVarImport(interp, object, ObjStr(objv[0]), objc-1, objv+1);
CallStackRestoreSavedFrames(interp, &ctx);
return result;
}
/*
objectMethod mixinguard NsfOMixinGuardMethod {
{-argName "mixin" -required 1 -type tclobj}
{-argName "guard" -required 1 -type tclobj}
}
*/
static int
NsfOMixinGuardMethod(Tcl_Interp *interp, NsfObject *object, Tcl_Obj *mixin, Tcl_Obj *guardObj) {
NsfObjectOpt *opt;
assert(interp != NULL);
assert(object != NULL);
assert(mixin != NULL);
assert(guardObj != NULL);
opt = object->opt;
if (opt && opt->objMixins) {
Tcl_Command mixinCmd = Tcl_GetCommandFromObj(interp, mixin);
if (mixinCmd != NULL) {
NsfClass *mixinCl = NsfGetClassFromCmdPtr(mixinCmd);
if (mixinCl != NULL) {
NsfCmdList *h = CmdListFindCmdInList(mixinCmd, opt->objMixins);
if (h != NULL) {
if (h->clientData != NULL) {
GuardDel((NsfCmdList *) h);
}
GuardAdd(h, guardObj);
object->flags &= ~NSF_MIXIN_ORDER_VALID;
return TCL_OK;
}
}
}
}
return NsfPrintError(interp, "mixinguard: can't find mixin %s on %s",
ObjStr(mixin), ObjectName(object));
}
/*
objectMethod noinit NsfONoinitMethod {
}
*/
static int
NsfONoinitMethod(Tcl_Interp *UNUSED(interp), NsfObject *object) {
assert(object != NULL);
object->flags |= NSF_INIT_CALLED;
return TCL_OK;
}
/*
objectMethod requirenamespace NsfORequireNamespaceMethod {
}
*/
static int
NsfORequireNamespaceMethod(Tcl_Interp *interp, NsfObject *object) {
assert(interp != NULL);
assert(object != NULL);
RequireObjNamespace(interp, object);
return TCL_OK;
}
/*
objectMethod residualargs NsfOResidualargsMethod {
{-argName "args" -type allargs}
}
*/
static int
NsfOResidualargsMethod(Tcl_Interp *interp, NsfObject *object, int objc, Tcl_Obj *CONST objv[]) {
int i, start = 1, argc, nextArgc, normalArgs, result = TCL_OK, isdasharg = NO_DASH;
const char *methodName, *nextMethodName, *initString = NULL;
Tcl_Obj **argv, **nextArgv;
assert(interp != NULL);
assert(object != NULL);
#if 0
fprintf(stderr, "NsfOResidualargsMethod %s %2d ", ObjectName(object), objc);
for(i = 0; i < objc; i++) {fprintf(stderr, " [%d]=%p %s,", i, &objv[i], ObjStr(objv[i]));}
fprintf(stderr, "\n");
#endif
/* skip arguments without leading dash */
for (i = start; i < objc; i++) {
if ((isdasharg = IsDashArg(interp, objv[i], 1, &methodName, &argc, &argv))) {
break;
}
}
normalArgs = i-1;
/*
* Get the init string; do it once, outside the loop. If initString is not
* obtainable (i.e. not configured in the object system), don't call the
* "init" method in the loop.
*/
if (i < objc) {
NsfObjectSystem *osPtr = GetObjectSystem(object);
Tcl_Obj *initObj = osPtr->methods[NSF_o_init_idx];
if (initObj != NULL) {
initString = ObjStr(initObj);
assert(initString != NULL);
}
}
for( ; i < objc; argc = nextArgc, argv = nextArgv, methodName = nextMethodName) {
Tcl_ResetResult(interp);
switch (isdasharg) {
case SKALAR_DASH: /* Argument is a skalar with a leading dash */
{ int j;
nextMethodName = NULL;
nextArgv = NULL;
nextArgc = 0;
for (j = i+1; j < objc; j++, argc++) {
if ((isdasharg = IsDashArg(interp, objv[j], 1, &nextMethodName, &nextArgc, &nextArgv))) {
break;
}
}
if (initString != NULL) {
result = CallConfigureMethod(interp, object, initString, methodName, argc+1, objv+i+1);
if (unlikely(result != TCL_OK)) {
return result;
}
}
i += argc;
break;
}
case LIST_DASH: /* Argument is a list with a leading dash, grouping determined by list */
{ i++;
nextMethodName = NULL;
if (i < objc) {
isdasharg = IsDashArg(interp, objv[i], 1, &nextMethodName, &nextArgc, &nextArgv);
} else {
nextMethodName = NULL;
nextArgv = NULL;
nextArgc = 0;
}
if (initString != NULL) {
result = CallConfigureMethod(interp, object, initString, methodName, argc+1, argv+1);
if (unlikely(result != TCL_OK)) {
return result;
}
}
break;
}
default:
{
return NsfPrintError(interp, "%s configure: unexpected argument '%s' between parameters",
ObjectName(object), ObjStr(objv[i]));
}
}
}
/*
* Call init with residual args in case it was not called yet.
*/
result = DispatchInitMethod(interp, object, normalArgs, objv+1, 0);
if (likely(result == TCL_OK)) {
/*
* Return the non-processed leading arguments unless there was an error
* (XOTcl convention)
*/
Tcl_SetObjResult(interp, Tcl_NewListObj(normalArgs, objv+1));
}
return result;
}
/*
objectMethod uplevel NsfOUplevelMethod {
{-argName "args" -type allargs}
}
*/
static int
NsfOUplevelMethod(Tcl_Interp *interp, NsfObject *UNUSED(object), int objc, Tcl_Obj *CONST objv[]) {
int i, result = TCL_ERROR;
Tcl_CallFrame *framePtr = NULL, *savedVarFramePtr;
assert(interp != NULL);
assert(objv != NULL);
/*
* Find the level to use for executing the command.
*/
if (objc > 2) {
CallFrame *cf;
const char *frameInfo = ObjStr(objv[1]);
result = TclGetFrame(interp, frameInfo, &cf);
if (result == -1) {
return TCL_ERROR;
}
framePtr = (Tcl_CallFrame *)cf;
i = result+1;
} else {
i = 1;
}
objc -= i;
objv += i;
if (framePtr == NULL) {
NsfCallStackFindLastInvocation(interp, 1, &framePtr);
if (framePtr == NULL) {
framePtr = (Tcl_CallFrame *)Tcl_Interp_varFramePtr(interp)->callerVarPtr;
if (framePtr == NULL) {
framePtr = (Tcl_CallFrame *)Tcl_Interp_varFramePtr(interp);
}
}
}
savedVarFramePtr = (Tcl_CallFrame *)Tcl_Interp_varFramePtr(interp);
Tcl_Interp_varFramePtr(interp) = (CallFrame *)framePtr;
/*
* Execute the residual arguments as a command.
*/
if (objc == 1) {
result = Tcl_EvalObjEx(interp, objv[0], TCL_EVAL_DIRECT);
} else {
/*
* More than one argument: concatenate them together with spaces
* between, then evaluate the result. Tcl_EvalObjEx will delete
* the object when it decrements its refCount after eval'ing it.
*/
Tcl_Obj *objPtr = Tcl_ConcatObj(objc, objv);
result = Tcl_EvalObjEx(interp, objPtr, TCL_EVAL_DIRECT);
}
if (unlikely(result == TCL_ERROR)) {
Tcl_AppendObjToErrorInfo(interp,
Tcl_ObjPrintf("\n (\"uplevel\" body line %d)",
Tcl_GetErrorLine(interp)));
}
/*
* Restore the variable frame, and return.
*/
Tcl_Interp_varFramePtr(interp) = (CallFrame *)savedVarFramePtr;
return result;
}
/*
objectMethod upvar NsfOUpvarMethod {
{-argName "args" -type allargs}
}
*/
static int
NsfOUpvarMethod(Tcl_Interp *interp, NsfObject *object, int objc, Tcl_Obj *CONST objv[]) {
Tcl_Obj *frameInfoObj = NULL;
int i, result = TCL_ERROR;
const char *frameInfo;
callFrameContext ctx = {0, NULL, NULL};
assert(interp != NULL);
assert(object != NULL);
if (objc % 2 == 0) {
frameInfo = ObjStr(objv[1]);
i = 2;
} else {
frameInfoObj = ComputeLevelObj(interp, CALLING_LEVEL);
INCR_REF_COUNT(frameInfoObj);
frameInfo = ObjStr(frameInfoObj);
i = 1;
}
if (object->filterStack || object->mixinStack) {
CallStackUseActiveFrame(interp, &ctx);
}
for ( ; i < objc; i += 2) {
result = Tcl_UpVar2(interp, frameInfo, ObjStr(objv[i]), NULL,
ObjStr(objv[i+1]), 0 /*flags*/);
if (unlikely(result != TCL_OK)) {
break;
}
}
if (frameInfoObj != NULL) {
DECR_REF_COUNT(frameInfoObj);
}
CallStackRestoreSavedFrames(interp, &ctx);
return result;
}
/*
objectMethod volatile NsfOVolatileMethod {
}
*/
static int
NsfOVolatileMethod(Tcl_Interp *interp, NsfObject *object) {
int result = TCL_ERROR;
Tcl_Obj *objPtr;
const char *fullName, *vn;
callFrameContext ctx = {0, NULL, NULL};
assert(interp != NULL);
assert(object != NULL);
if (unlikely(RUNTIME_STATE(interp)->exitHandlerDestroyRound != NSF_EXITHANDLER_OFF)) {
return NsfPrintError(interp, "can't make objects volatile during shutdown");
}
CallStackUseActiveFrame(interp, &ctx);
objPtr = object->cmdName;
fullName = ObjStr(objPtr);
vn = NSTail(fullName);
if (Tcl_SetVar2(interp, vn, NULL, fullName, 0)) {
NsfObjectOpt *opt = NsfRequireObjectOpt(object);
/*fprintf(stderr, "### setting trace for %s on frame %p\n", fullName,
Tcl_Interp_varFramePtr(interp));
NsfShowStack(interp);*/
result = Tcl_TraceVar(interp, vn, TCL_TRACE_UNSETS,
(Tcl_VarTraceProc *)NsfUnsetTrace,
objPtr);
opt->volatileVarName = vn;
}
CallStackRestoreSavedFrames(interp, &ctx);
if (likely(result == TCL_OK)) {
INCR_REF_COUNT(objPtr);
}
return result;
}
/***********************************************************************
* End Object Methods
***********************************************************************/
/***********************************************************************
* Begin Class Methods
***********************************************************************/
static int
NsfCAllocMethod_(Tcl_Interp *interp, NsfClass *cl, Tcl_Obj *nameObj, Tcl_Namespace *parentNsPtr) {
const char *nameString = ObjStr(nameObj);
NsfObject *newObj;
assert(interp != NULL);
assert(cl != NULL);
assert(nameObj != NULL);
assert(isAbsolutePath(nameString));
assert(NSValidObjectName(nameString, 0));
/*
* Create a new object from scratch.
*/
if (IsMetaClass(interp, cl, 1) == 0) {
/*
* If the base class is an ordinary class, we create an object.
*/
newObj = PrimitiveOCreate(interp, nameObj, parentNsPtr, cl);
} else {
/*
* If the base class is a meta-class, we create a class.
*/
newObj = (NsfObject *)PrimitiveCCreate(interp, nameObj, parentNsPtr, cl);
}
if (unlikely(newObj == NULL)) {
return NsfPrintError(interp, "alloc failed to create '%s' "
"(possibly parent namespace does not exist)",
nameString);
}
if (NSF_DTRACE_OBJECT_ALLOC_ENABLED()) {
NSF_DTRACE_OBJECT_ALLOC(ObjectName(newObj), ClassName(cl));
}
Tcl_SetObjResult(interp, nameObj);
return TCL_OK;
}
/*
classMethod alloc NsfCAllocMethod {
{-argName "name" -required 1 -type tclobj}
}
*/
static int
NsfCAllocMethod(Tcl_Interp *interp, NsfClass *cl, Tcl_Obj *nameObj) {
const char *nameString = ObjStr(nameObj);
Tcl_Namespace *parentNsPtr;
Tcl_Obj *tmpName;
int result;
assert(interp != NULL);
assert(cl != NULL);
assert(nameObj != NULL);
/*
* Create a new object from scratch.
*/
/*
* Check for illegal names.
*/
if (unlikely(NSValidObjectName(nameString, 0) == 0)) {
return NsfPrintError(interp, "cannot allocate object - illegal name '%s'", nameString);
}
/*
* If the path is not absolute, we add the appropriate namespace.
*/
if (isAbsolutePath(nameString)) {
tmpName = NULL;
parentNsPtr = NULL;
} else {
parentNsPtr = CallingNameSpace(interp);
nameObj = tmpName = NameInNamespaceObj(nameString, parentNsPtr);
if (strchr(nameString, ':')) {
parentNsPtr = NULL;
}
INCR_REF_COUNT(tmpName);
/*fprintf(stderr, " **** NoAbsoluteName for '%s' -> determined = '%s' parentNs %s\n",
nameString, ObjStr(tmpName), parentNsPtr->fullName);*/
}
result = NsfCAllocMethod_(interp, cl, nameObj, parentNsPtr);
if (tmpName != NULL) {
DECR_REF_COUNT(tmpName);
}
return result;
}
/*
classMethod create NsfCCreateMethod {
{-argName "name" -required 1}
{-argName "args" -type allargs}
}
*/
static int
NsfCCreateMethod(Tcl_Interp *interp, NsfClass *cl, Tcl_Obj *specifiedNameObj, int objc, Tcl_Obj *CONST objv[]) {
NsfObject *newObject = NULL;
Tcl_Obj *nameObj, *methodObj, *tmpObj = NULL;
int result;
const char *nameString = ObjStr(specifiedNameObj);
Tcl_Namespace *parentNsPtr;
assert(interp != NULL);
assert(cl != NULL);
assert(specifiedNameObj != NULL);
assert(objv != NULL);
#if 0
{ int i;
fprintf(stderr, "NsfCCreateMethod %s create <%s> oc %d ", ClassName(cl), ObjStr(specifiedNameObj), objc);
for(i = 0; i < objc; i++) {fprintf(stderr, " [%d]=%s,", i, ObjStr(objv[i]));}
fprintf(stderr, "\n");
}
#endif
if (unlikely(RUNTIME_STATE(interp)->exitHandlerDestroyRound != NSF_EXITHANDLER_OFF)) {
fprintf(stderr, "### Can't create object %s during shutdown\n", ObjStr(objv[1]));
return TCL_OK; /* don't fail, if this happens during destroy, it might be canceled */
}
/*
* Check for illegal names.
*/
if (unlikely(NSValidObjectName(nameString, 0) == 0)) {
result = NsfPrintError(interp, "cannot allocate object - illegal name '%s'", nameString);
goto create_method_exit;
}
/*fprintf(stderr, "NsfCCreateMethod specifiedName %s\n", nameString);*/
/*
* Complete the name if it is not absolute.
*/
if (!isAbsolutePath(nameString)) {
parentNsPtr = CallingNameSpace(interp);
tmpObj = NameInNamespaceObj(nameString, parentNsPtr);
/*
* If the name contains colons, the parentNsPtr is not appropriate
* for determining the parent.
*/
if (strchr(nameString, ':')) {
parentNsPtr = NULL;
}
nameString = ObjStr(tmpObj);
/* fprintf(stderr, " **** fixed name is '%s'\n", nameString); */
INCR_REF_COUNT(tmpObj);
nameObj = tmpObj;
} else {
parentNsPtr = NULL;
nameObj = specifiedNameObj;
/* fprintf(stderr, " **** used specified name is '%s'\n", nameString); */
}
/*
* Check whether we have to call recreate (i.e. when the object exists
* already). First check, if was have such a command, then check, if the
* command is an object.
*/
{
Tcl_Command cmd = NSFindCommand(interp, nameString);
if (cmd != NULL) {
newObject = NsfGetObjectFromCmdPtr(cmd);
if (newObject == NULL) {
/*
* We have a cmd, but no object. Don't allow to overwrite an ordinary
* cmd by an nsf object.
*/
result = NsfPrintError(interp, "refuse to overwrite cmd %s; delete/rename it before overwriting", nameString);
goto create_method_exit;
}
}
}
/*fprintf(stderr, "+++ createspecifiedName '%s', nameString '%s', newObject=%p ismeta(%s) %d, ismeta(%s) %d\n",
ObjStr(specifiedNameObj), nameString, newObject,
ClassName(cl), IsMetaClass(interp, cl, 1), (newObject != NULL) ? ClassName(newObject->cl) : "NULL", (newObject != NULL) ? IsMetaClass(interp, newObject->cl, 1) : 0
);*/
/*
* Provide protection against recreation if base classes.
*/
if (unlikely(newObject && unlikely(IsBaseClass(newObject)))) {
result = NsfPrintError(interp, "cannot recreate base class %s", ObjectName(newObject));
goto create_method_exit;
}
/*
* Don't allow to
* - recreate an object as a class,
* - recreate a class as an object, and to
* - recreate an object in a different object system
*
* In these clases, we use destroy followed by create instead of recreate.
*/
if (newObject
&& (IsMetaClass(interp, cl, 1) == IsMetaClass(interp, newObject->cl, 1))
&& GetObjectSystem(newObject) == cl->osPtr) {
/*fprintf(stderr, "%%%% recreate, call recreate method ... %s, objc=%d oldOs %p != newOs %p EQ %d\n",
ObjStr(nameObj), objc+1,
GetObjectSystem(newObject), cl->osPtr,
GetObjectSystem(newObject) != cl->osPtr
);*/
/* call recreate --> initialization */
if (CallDirectly(interp, &cl->object, NSF_c_recreate_idx, &methodObj)) {
NSF_PROFILE_TIME_DATA;
NSF_PROFILE_CALL(interp, &cl->object, Nsf_SystemMethodOpts[NSF_c_recreate_idx]);
result = RecreateObject(interp, cl, newObject, objc, objv);
NSF_PROFILE_EXIT(interp, &cl->object, Nsf_SystemMethodOpts[NSF_c_recreate_idx]);
} else {
ALLOC_ON_STACK(Tcl_Obj*, objc+3, xov);
xov[0] = NULL; /* just a placeholder for passing conventions in ObjectDispatch() */
xov[1] = methodObj;
xov[2] = nameObj;
if (objc >= 1) {
memcpy(xov+3, objv, sizeof(Tcl_Obj *)*objc);
}
result = ObjectDispatch(cl, interp, objc+3, xov, NSF_CM_IGNORE_PERMISSIONS|NSF_CSC_IMMEDIATE);
FREE_ON_STACK(Tcl_Obj *, xov);
}
if (unlikely(result != TCL_OK)) {
goto create_method_exit;
}
Tcl_SetObjResult(interp, newObject->cmdName);
nameObj = newObject->cmdName;
ObjTrace("RECREATE", newObject);
} else {
/*
* newObject might exist here, but will be automatically destroyed by
* alloc.
*/
if (CallDirectly(interp, &cl->object, NSF_c_alloc_idx, &methodObj)) {
NSF_PROFILE_TIME_DATA;
NSF_PROFILE_CALL(interp, &cl->object, Nsf_SystemMethodOpts[NSF_c_alloc_idx]);
result = NsfCAllocMethod_(interp, cl, nameObj, parentNsPtr);
NSF_PROFILE_EXIT(interp, &cl->object, Nsf_SystemMethodOpts[NSF_c_alloc_idx]);
} else {
result = CallMethod(cl, interp, methodObj,
3, &nameObj, NSF_CSC_IMMEDIATE);
}
if (unlikely(result != TCL_OK)) {
goto create_method_exit;
}
nameObj = Tcl_GetObjResult(interp);
if (unlikely(GetObjectFromObj(interp, nameObj, &newObject) != TCL_OK)) {
result = NsfPrintError(interp, "couldn't find result of alloc");
goto create_method_exit;
}
ObjTrace("CREATE", newObject);
/*
* In case, the object is destroyed during initialization, we incr
* refCount.
*/
INCR_REF_COUNT(nameObj);
result = DoObjInitialization(interp, newObject, objc, objv);
DECR_REF_COUNT(nameObj);
}
create_method_exit:
if (tmpObj != NULL) {DECR_REF_COUNT(tmpObj);}
return result;
}
/*
classMethod dealloc NsfCDeallocMethod {
{-argName "object" -required 1 -type tclobj}
}
*/
static int
NsfCDeallocMethod(Tcl_Interp *interp, NsfClass *UNUSED(cl), Tcl_Obj *obj) {
NsfObject *object;
assert(interp != NULL);
if (GetObjectFromObj(interp, obj, &object) != TCL_OK) {
return NsfPrintError(interp, "can't destroy object %s that does not exist",
ObjStr(obj));
}
return DoDealloc(interp, object);
}
/*
classMethod filterguard NsfCFilterGuardMethod {
{-argName "filter" -required 1}
{-argName "guard" -required 1 -type tclobj}
}
*/
static int
NsfCFilterGuardMethod(Tcl_Interp *interp, NsfClass *cl,
const char *filter, Tcl_Obj *guardObj) {
NsfClassOpt *opt;
assert(interp != NULL);
assert(cl != NULL);
assert(filter != NULL);
assert(guardObj != NULL);
opt = cl->opt;
if (opt && opt->classFilters) {
NsfCmdList *h = CmdListFindNameInList(interp, filter, opt->classFilters);
if (h != NULL) {
NsfClasses *subClasses = DependentSubClasses(cl);
if (h->clientData != NULL) {
GuardDel(h);
}
GuardAdd(h, guardObj);
if (subClasses != NULL) {
FilterInvalidateObjOrders(interp, subClasses);
NsfClassListFree(subClasses);
}
return TCL_OK;
}
}
return NsfPrintError(interp, "filterguard: can't find filter %s on %s",
filter, ClassName(cl));
}
/*
classMethod getCachedParameters NsfCGetCachendParametersMethod {
}
*/
static int
NsfCGetCachendParametersMethod(Tcl_Interp *interp, NsfClass *class) {
assert(interp != NULL);
assert(class != NULL);
if (likely(class->parsedParamPtr && class->parsedParamPtr->paramDefs)) {
Tcl_Obj *listObj;
listObj = ListParamDefs(interp, class->parsedParamPtr->paramDefs->paramsPtr,
NULL, NULL, NSF_PARAMS_PARAMETER);
Tcl_SetObjResult(interp, listObj);
DECR_REF_COUNT2("paramDefsObj", listObj);
}
return TCL_OK;
}
/*
classMethod mixinguard NsfCMixinGuardMethod {
{-argName "mixin" -required 1 -type tclobj}
{-argName "guard" -required 1 -type tclobj}
}
*/
static int
NsfCMixinGuardMethod(Tcl_Interp *interp, NsfClass *cl, Tcl_Obj *mixin, Tcl_Obj *guardObj) {
NsfClassOpt *opt;
assert(interp != NULL);
assert(cl != NULL);
assert(mixin != NULL);
assert(guardObj != NULL);
opt = cl->opt;
if (opt && opt->classMixins) {
Tcl_Command mixinCmd = Tcl_GetCommandFromObj(interp, mixin);
if (mixinCmd != NULL) {
NsfClass *mixinCl = NsfGetClassFromCmdPtr(mixinCmd);
if (mixinCl != NULL) {
NsfCmdList *h = CmdListFindCmdInList(mixinCmd, opt->classMixins);
if (h != NULL) {
NsfClasses *subClasses;
if (h->clientData != NULL) {
GuardDel((NsfCmdList *) h);
}
GuardAdd(h, guardObj);
subClasses = DependentSubClasses(cl);
MixinInvalidateObjOrders(interp, cl, subClasses);
NsfClassListFree(subClasses);
return TCL_OK;
}
}
}
}
return NsfPrintError(interp, "mixinguard: can't find mixin %s on %s",
ObjStr(mixin), ClassName(cl));
}
/*
classMethod new NsfCNewMethod {
{-argName "-childof" -required 0 -type tclobj}
{-argName "args" -required 0 -type args}
}
*/
static int
NsfCNewMethod(Tcl_Interp *interp, NsfClass *cl, Tcl_Obj *withChildof,
int objc, Tcl_Obj *CONST objv[]) {
Tcl_Obj *fullnameObj;
Tcl_DString dFullname, *dsPtr = &dFullname;
int result;
assert(interp != NULL);
assert(cl != NULL);
#if 0
{ int i;
fprintf(stderr, "NsfCNewMethod %s withChildof %p oc %d ", ClassName(cl), withChildof, objc);
for(i = 0; i < objc; i++) {fprintf(stderr, " [%d]=%s,", i, ObjStr(objv[i]));}
fprintf(stderr, "\n");
}
#endif
Tcl_DStringInit(dsPtr);
if (withChildof != 0) {
const char *parentName = ObjStr(withChildof);
/*
* If parentName is fully qualified, use it as prefix, else prepend the
* CallingNameSpace() to be compatible with the object name completion.
*/
if (*parentName == ':' && *(parentName + 1) == ':') {
/*
* Prepend parentName only if it is not "::"
*/
if (*(parentName + 2) != '\0') {
Tcl_DStringAppend(dsPtr, parentName, -1);
}
} else {
Tcl_Obj *tmpName = NameInNamespaceObj(parentName, CallingNameSpace(interp));
const char *completedParentName;
INCR_REF_COUNT(tmpName);
completedParentName = ObjStr(tmpName);
if (strcmp(completedParentName, "::")) {
Tcl_DStringAppend(dsPtr, ObjStr(tmpName), -1);
}
DECR_REF_COUNT(tmpName);
}
Tcl_DStringAppend(dsPtr, "::__#", 5);
} else {
Tcl_DStringAppend(dsPtr, "::nsf::__#", 10);
}
NewTclCommand(interp, dsPtr);
fullnameObj = Tcl_NewStringObj(Tcl_DStringValue(dsPtr), Tcl_DStringLength(dsPtr));
INCR_REF_COUNT(fullnameObj);
{
Tcl_Obj *methodObj;
int callDirectly;
callDirectly = CallDirectly(interp, &cl->object, NSF_c_create_idx, &methodObj);
if (callDirectly != 0) {
NSF_PROFILE_TIME_DATA;
NSF_PROFILE_CALL(interp, &cl->object, Nsf_SystemMethodOpts[NSF_c_create_idx]);
result = NsfCCreateMethod(interp, cl, fullnameObj, objc, objv);
NSF_PROFILE_EXIT(interp, &cl->object, Nsf_SystemMethodOpts[NSF_c_create_idx]);
} else {
ALLOC_ON_STACK(Tcl_Obj*, objc+3, ov);
ov[0] = NULL; /* just a placeholder for passing conventions in ObjectDispatch() */
ov[1] = methodObj;
ov[2] = fullnameObj;
if (objc >= 1) {
memcpy(ov+3, objv, sizeof(Tcl_Obj *)*objc);
}
result = ObjectDispatch(cl, interp, objc+3, ov, NSF_CSC_IMMEDIATE);
FREE_ON_STACK(Tcl_Obj *, ov);
}
}
DECR_REF_COUNT(fullnameObj);
Tcl_DStringFree(dsPtr);
return result;
}
/*
classMethod recreate NsfCRecreateMethod {
{-argName "name" -required 1 -type tclobj}
{-argName "args" -type allargs}
}
*/
static int
RecreateObject(Tcl_Interp *interp, NsfClass *class, NsfObject *object,
int objc, Tcl_Obj *CONST objv[]) {
int result;
assert(interp != NULL);
assert(class != NULL);
assert(object != NULL);
assert(objv != NULL);
object->flags |= NSF_RECREATE;
/*
* First, cleanup the data from the object.
*
* Check whether we have a pending destroy on the object; if yes,
* clear it, such that the recreated object and won't be destroyed
* on a POP.
*/
MarkUndestroyed(object);
/*
* Ensure correct class for object.
*/
result = ChangeClass(interp, object, class);
if (likely(result == TCL_OK)) {
Tcl_Obj *methodObj;
/*
* Dispatch "cleanup" method.
*/
if (CallDirectly(interp, object, NSF_o_cleanup_idx, &methodObj)) {
NSF_PROFILE_TIME_DATA;
/*fprintf(stderr, "RECREATE calls cleanup directly for object %s\n", ObjectName(object));*/
NSF_PROFILE_CALL(interp, object, Nsf_SystemMethodOpts[NSF_o_cleanup_idx]);
result = NsfOCleanupMethod(interp, object);
NSF_PROFILE_EXIT(interp, object, Nsf_SystemMethodOpts[NSF_o_cleanup_idx]);
} else {
/*NsfObjectSystem *osPtr = GetObjectSystem(object);
fprintf(stderr, "RECREATE calls method cleanup for object %p %s OS %s\n",
object, ObjectName(object), ObjectName(&osPtr->rootClass->object));*/
result = CallMethod(object, interp, methodObj,
2, NULL, NSF_CM_IGNORE_PERMISSIONS|NSF_CSC_IMMEDIATE);
}
}
/*
* Second: if cleanup was successful, initialize the object as usual.
*/
if (likely(result == TCL_OK)) {
result = DoObjInitialization(interp, object, objc, objv);
if (likely(result == TCL_OK)) {
Tcl_SetObjResult(interp, object->cmdName);
} else {
/* fprintf(stderr, "recreate DoObjInitialization returned %d\n", result);*/
}
}
return result;
}
static int
NsfCRecreateMethod(Tcl_Interp *interp, NsfClass *cl, Tcl_Obj *nameObj,
int objc, Tcl_Obj *CONST objv[]) {
NsfObject *object;
assert(interp != NULL);
assert(cl != NULL);
assert(nameObj != NULL);
if (GetObjectFromObj(interp, nameObj, &object) != TCL_OK) {
return NsfPrintError(interp, "can't recreate non existing object %s", ObjStr(nameObj));
}
return RecreateObject(interp, cl, object, objc, objv);
}
/*
classMethod superclass NsfCSuperclassMethod {
{-argName "superclasses" -required 0 -type tclobj}
}
*/
static int
NsfCSuperclassMethod(Tcl_Interp *interp, NsfClass *cl, Tcl_Obj *superClassesObj) {
assert(interp != NULL);
assert(cl != NULL);
return NsfRelationSetCmd(interp, &cl->object, RelationtypeSuperclassIdx, superClassesObj);
}
/***********************************************************************
* End Class Methods
***********************************************************************/
static int
AggregatedMethodType(int methodType) {
switch (methodType) {
case MethodtypeNULL: /* default */
case MethodtypeAllIdx:
methodType = NSF_METHODTYPE_ALL;
break;
case MethodtypeScriptedIdx:
/*methodType = NSF_METHODTYPE_SCRIPTED|NSF_METHODTYPE_ALIAS;*/
methodType = NSF_METHODTYPE_SCRIPTED;
break;
case MethodtypeBuiltinIdx:
methodType = NSF_METHODTYPE_BUILTIN|NSF_METHODTYPE_OBJECT;
break;
case MethodtypeForwarderIdx:
methodType = NSF_METHODTYPE_FORWARDER;
break;
case MethodtypeAliasIdx:
methodType = NSF_METHODTYPE_ALIAS;
break;
case MethodtypeSetterIdx:
methodType = NSF_METHODTYPE_SETTER;
break;
case MethodtypeObjectIdx:
methodType = NSF_METHODTYPE_OBJECT;
break;
case MethodtypeNsfprocIdx:
methodType = NSF_METHODTYPE_NSFPROC;
break;
default:
methodType = 0;
}
return methodType;
}
/***********************************************************************
* Begin Object Info Methods
***********************************************************************/
/*
objectInfoMethod children NsfObjInfoChildrenMethod {
{-argName "-type" -required 0 -nrargs 1 -type class}
{-argName "pattern" -required 0}
}
*/
static int
NsfObjInfoChildrenMethod(Tcl_Interp *interp, NsfObject *object, NsfClass *type, const char *pattern) {
assert(interp != NULL);
assert(object != NULL);
return ListChildren(interp, object, pattern, 0, type);
}
/*
objectInfoMethod class NsfObjInfoClassMethod {
}
*/
static int
NsfObjInfoClassMethod(Tcl_Interp *interp, NsfObject *object) {
assert(interp != NULL);
assert(object != NULL);
Tcl_SetObjResult(interp, object->cl->object.cmdName);
return TCL_OK;
}
/*
objectInfoMethod filterguard NsfObjInfoFilterguardMethod {
{-argName "filter" -required 1}
}
*/
static int
NsfObjInfoFilterguardMethod(Tcl_Interp *interp, NsfObject *object, const char *filter) {
assert(interp != NULL);
assert(object != NULL);
assert(filter != NULL);
return (object->opt != NULL) ? GuardList(interp, object->opt->objFilters, filter) : TCL_OK;
}
/*
objectInfoMethod filters NsfObjInfoFiltersMethod {
{-argName "-guards" -nrargs 0 -type switch}
{-argName "pattern"}
}
*/
static int
NsfObjInfoFiltersMethod(Tcl_Interp *interp, NsfObject *object, int withGuards,
const char *pattern) {
NsfObjectOpt *opt;
assert(interp != NULL);
assert(object != NULL);
opt = object->opt;
return (opt != NULL) ? FilterInfo(interp, opt->objFilters, pattern, withGuards, 0) : TCL_OK;
}
/*
objectInfoMethod forward NsfObjInfoForwardMethod {
{-argName "-definition"}
{-argName "name"}
}
*/
static int
NsfObjInfoForwardMethod(Tcl_Interp *interp, NsfObject *object, int withDefinition, const char *pattern) {
assert(interp != NULL);
assert(object != NULL);
return (object->nsPtr != NULL) ?
ListForward(interp, Tcl_Namespace_cmdTablePtr(object->nsPtr), pattern, withDefinition) :
TCL_OK;
}
/*
objectInfoMethod hasmixin NsfObjInfoHasMixinMethod {
{-argName "class" -required 1 -type class}
}
*/
static int
NsfObjInfoHasMixinMethod(Tcl_Interp *interp, NsfObject *object, NsfClass *mixinClass) {
assert(interp != NULL);
assert(object != NULL);
assert(mixinClass != NULL);
Tcl_SetBooleanObj(Tcl_GetObjResult(interp), HasMixin(interp, object, mixinClass));
return TCL_OK;
}
/*
objectInfoMethod hasnamespace NsfObjInfoHasnamespaceMethod {
}
*/
static int
NsfObjInfoHasnamespaceMethod(Tcl_Interp *interp, NsfObject *object) {
assert(interp != NULL);
assert(object != NULL);
Tcl_SetBooleanObj(Tcl_GetObjResult(interp), object->nsPtr != NULL);
return TCL_OK;
}
/*
objectInfoMethod hastype NsfObjInfoHasTypeMethod {
{-argName "class" -required 1 -type class}
}
*/
static int
NsfObjInfoHasTypeMethod(Tcl_Interp *interp, NsfObject *object, NsfClass *typeClass) {
assert(interp != NULL);
assert(object != NULL);
assert(typeClass != NULL);
Tcl_SetBooleanObj(Tcl_GetObjResult(interp), IsSubType(object->cl, typeClass));
return TCL_OK;
}
/*
objectInfoMethod lookupfilter NsfObjInfoLookupFilterMethod {
{-argName "filter" -required 1}
}
*/
static int
NsfObjInfoLookupFilterMethod(Tcl_Interp *interp, NsfObject *object, const char *filter) {
const char *filterName;
NsfCmdList *cmdList;
NsfClass *fcl;
assert(interp != NULL);
assert(object != NULL);
assert(filter != NULL);
/*
* Searches for filter on [self] and returns fully qualified name if it is
* not found it returns an empty string.
*/
Tcl_ResetResult(interp);
if (!(object->flags & NSF_FILTER_ORDER_VALID)) {
FilterComputeDefined(interp, object);
}
if (!(object->flags & NSF_FILTER_ORDER_DEFINED)) {
return TCL_OK;
}
for (cmdList = object->filterOrder; cmdList; cmdList = cmdList->nextPtr) {
filterName = Tcl_GetCommandName(interp, cmdList->cmdPtr);
if (filterName[0] == filter[0] && !strcmp(filterName, filter)) {
break;
}
}
if (cmdList == NULL) {
return TCL_OK;
}
fcl = cmdList->clorobj;
Tcl_SetObjResult(interp, MethodHandleObj((NsfObject *)fcl, !NsfObjectIsClass(&fcl->object), filterName));
return TCL_OK;
}
/*
objectInfoMethod lookupfilters NsfObjInfoLookupFiltersMethod {
{-argName "-guards" -nrargs 0 -type switch}
{-argName "pattern"}
}
*/
static int
NsfObjInfoLookupFiltersMethod(Tcl_Interp *interp, NsfObject *object, int withGuards, const char *pattern) {
assert(interp != NULL);
assert(object != NULL);
if (!(object->flags & NSF_FILTER_ORDER_VALID)) {
FilterComputeDefined(interp, object);
}
return FilterInfo(interp, object->filterOrder, pattern, withGuards, 1);
}
/*
objectInfoMethod lookupmethod NsfObjInfoLookupMethodMethod {
{-argName "name" -required 1 -type tclobj}
}
*/
static int
NsfObjInfoLookupMethodMethod(Tcl_Interp *interp, NsfObject *object, Tcl_Obj *methodObj) {
NsfClass *pcl = NULL;
Tcl_Command cmd;
assert(interp != NULL);
assert(object != NULL);
assert(methodObj != NULL);
cmd = ObjectFindMethod(interp, object, methodObj, &pcl);
if (likely(cmd != NULL)) {
NsfObject *pobj = (pcl != NULL) ? &pcl->object : object;
int perObject = (pcl == NULL);
ListMethod(interp, pobj, pobj, ObjStr(methodObj), cmd,
InfomethodsubcmdRegistrationhandleIdx,
NULL, NULL, perObject);
}
return TCL_OK;
}
/*
objectInfoMethod lookupmethods NsfObjInfoLookupMethodsMethod {
{-argName "-callprotection" -nrargs 1 -type "all|public|protected|private" -default all}
{-argName "-incontext"}
{-argName "-type" -nrargs 1 -typeName "methodtype" -type "all|scripted|builtin|alias|forwarder|object|setter"}
{-argName "-nomixins"}
{-argName "-path" -nrargs 0}
{-argName "-source" -nrargs 1 -type "all|application|system"}
{-argName "pattern" -required 0}
}
*/
static int ListMethodKeysClassList(Tcl_Interp *interp, NsfClasses *classListPtr,
int withSource, const char *pattern,
int methodType, int withCallprotection,
int withPath, Tcl_HashTable *dups,
NsfObject *object, int withPer_object)
nonnull(1) nonnull(8) nonnull(9);
static int
ListMethodKeysClassList(Tcl_Interp *interp, NsfClasses *classListPtr,
int withSource, const char *pattern,
int methodType, int withCallprotection,
int withPath, Tcl_HashTable *dups,
NsfObject *object, int withPer_object) {
assert(interp != NULL);
assert(dups != NULL);
assert(object != NULL);
/* append method keys from inheritance order */
for (; classListPtr != NULL; classListPtr = classListPtr->nextPtr) {
Tcl_HashTable *cmdTablePtr = Tcl_Namespace_cmdTablePtr(classListPtr->cl->nsPtr);
if (!MethodSourceMatches(withSource, classListPtr->cl, NULL)) {
continue;
}
ListMethodKeys(interp, cmdTablePtr, NULL, pattern, methodType,
withCallprotection, withPath,
dups, object, withPer_object);
}
return TCL_OK;
}
/*
objectInfoMethod lookupmethods NsfObjInfoLookupMethodsMethod {
{-argName "-callprotection" -type "all|public|protected|private" -default all}
{-argName "-incontext" -nrargs 0}
{-argName "-type" -typeName "methodtype" -type "all|scripted|builtin|alias|forwarder|object|setter|nsfproc"}
{-argName "-nomixins" -nrargs 0}
{-argName "-path" -nrargs 0}
{-argName "-source" -type "all|application|system" -default all}
{-argName "pattern" -required 0}
}
*/
static int
NsfObjInfoLookupMethodsMethod(Tcl_Interp *interp, NsfObject *object,
int withCallprotection,
int withIncontext,
int withMethodtype,
int withNomixins,
int withPath,
int withSource,
const char *pattern) {
int withPer_object = 1;
Tcl_HashTable dupsTable, *dups = &dupsTable;
int result, methodType = AggregatedMethodType(withMethodtype);
assert(interp != NULL);
assert(object != NULL);
/*
* TODO: we could make this faster for patterns without meta-chars
* by letting ListMethodKeys() to signal us when an entry was found.
* we wait, until the we decided about "info methods defined"
* vs. "info method search" vs. "info defined" etc.
*/
if (withCallprotection == CallprotectionNULL) {
withCallprotection = CallprotectionPublicIdx;
}
if (withSource == SourceNULL) {
withSource = SourceAllIdx;
}
Tcl_InitHashTable(dups, TCL_STRING_KEYS);
if (object->nsPtr != NULL) {
Tcl_HashTable *cmdTablePtr = Tcl_Namespace_cmdTablePtr(object->nsPtr);
if (MethodSourceMatches(withSource, NULL, object)) {
ListMethodKeys(interp, cmdTablePtr, NULL, pattern, methodType,
withCallprotection, withPath,
dups, object, withPer_object);
}
}
if (withNomixins == 0) {
if (!(object->flags & NSF_MIXIN_ORDER_VALID)) {
MixinComputeDefined(interp, object);
}
if (object->flags & NSF_MIXIN_ORDER_DEFINED_AND_VALID) {
NsfCmdList *ml;
for (ml = object->mixinOrder; ml; ml = ml->nextPtr) {
int guardOk = TCL_OK;
NsfClass *mixin = NsfGetClassFromCmdPtr(ml->cmdPtr);
assert(mixin != NULL);
if (withIncontext != 0) {
if (!RUNTIME_STATE(interp)->guardCount && ml->clientData) {
guardOk = GuardCall(object, interp, ml->clientData, NULL);
}
}
if (mixin && guardOk == TCL_OK) {
Tcl_HashTable *cmdTablePtr = Tcl_Namespace_cmdTablePtr(mixin->nsPtr);
if (!MethodSourceMatches(withSource, mixin, NULL)) continue;
ListMethodKeys(interp, cmdTablePtr, NULL, pattern, methodType,
withCallprotection, withPath,
dups, object, withPer_object);
}
}
}
}
result = ListMethodKeysClassList(interp, PrecedenceOrder(object->cl),
withSource, pattern,
methodType, withCallprotection,
withPath, dups, object, withPer_object);
Tcl_DeleteHashTable(dups);
return result;
}
/*
objectInfoMethod lookupmixins NsfObjInfoLookupMixinsMethod {
{-argName "-guards" -nrargs 0 -type switch}
{-argName "pattern" -type objpattern}
}
*/
static int
NsfObjInfoLookupMixinsMethod(Tcl_Interp *interp, NsfObject *object, int withGuards,
const char *patternString, NsfObject *patternObj) {
assert(interp != NULL);
assert(object != NULL);
if (!(object->flags & NSF_MIXIN_ORDER_VALID)) {
MixinComputeDefined(interp, object);
}
return MixinInfo(interp, object->mixinOrder, patternString, withGuards, patternObj);
}
/*
objectInfoMethod lookupslots NsfObjInfoLookupSlotsMethod {
{-argName "-source" -nrargs 1 -type "all|application|system" -default all}
{-argName "-type" -required 0 -nrargs 1 -type class}
{-argName "pattern" -required 0}
}
*/
static int
NsfObjInfoLookupSlotsMethod(Tcl_Interp *interp, NsfObject *object,
int withSource, NsfClass *type,
const char *pattern) {
Tcl_Obj *listObj = Tcl_NewListObj(0, NULL);
NsfClasses *precendenceList, *clPtr;
Tcl_HashTable slotTable;
assert(interp != NULL);
assert(object != NULL);
precendenceList = ComputePrecedenceList(interp, object, NULL /* pattern*/, 1, 1);
assert(precendenceList != NULL);
if (withSource == 0) {withSource = 1;}
Tcl_InitHashTable(&slotTable, TCL_STRING_KEYS);
MEM_COUNT_ALLOC("Tcl_InitHashTable", &slotTable);
/*
* First add the per-object slot objects.
*/
if (MethodSourceMatches(withSource, NULL, object)) {
AddSlotObjects(interp, object, "::per-object-slot", &slotTable,
withSource, type, pattern, listObj);
}
/*
* Then add the class provided slot objects.
*/
for (clPtr = precendenceList; likely(clPtr != NULL); clPtr = clPtr->nextPtr) {
if (MethodSourceMatches(withSource, clPtr->cl, NULL)) {
AddSlotObjects(interp, &clPtr->cl->object, "::slot", &slotTable,
withSource, type, pattern, listObj);
}
}
Tcl_DeleteHashTable(&slotTable);
MEM_COUNT_FREE("Tcl_InitHashTable", &slotTable);
NsfClassListFree(precendenceList);
Tcl_SetObjResult(interp, listObj);
return TCL_OK;
}
/*
objectInfoMethod method NsfObjInfoMethodMethod {
{-argName "infomethodsubcmd" -type "args|body|definition|exists|registrationhandle|definitionhandle|origin|parameter|syntax|type|precondition|postcondition|submethods"}
{-argName "name" -required 1 -type tclobj}
}
*/
static int
NsfObjInfoMethodMethod(Tcl_Interp *interp, NsfObject *object,
int subcmd, Tcl_Obj *methodNameObj) {
return ListMethodResolve(interp, subcmd, NULL, NULL, object->nsPtr, object, methodNameObj, 0);
}
/*
objectInfoMethod methods NsfObjInfoMethodsMethod {
{-argName "-callprotection" -type "all|public|protected|private" -default all}
{-argName "-type" -nrargs 1 -typeName "methodtype" -type "all|scripted|builtin|alias|forwarder|object|setter"}
{-argName "-path" -nrargs 0}
{-argName "pattern"}
}
*/
static int
NsfObjInfoMethodsMethod(Tcl_Interp *interp, NsfObject *object,
int withCallproctection,
int withMethodtype,
int withPath,
const char *pattern) {
assert(interp != NULL);
assert(object != NULL);
return ListDefinedMethods(interp, object, pattern, 1 /* per-object */,
AggregatedMethodType(withMethodtype), withCallproctection,
withPath);
}
/*
objectInfoMethod mixins NsfObjInfoMixinsMethod {
{-argName "-guards" -nrargs 0 -type switch}
{-argName "pattern" -type objpattern}
}
*/
static int
NsfObjInfoMixinsMethod(Tcl_Interp *interp, NsfObject *object, int withGuards,
const char *patternString, NsfObject *patternObj) {
assert(interp != NULL);
assert(object != NULL);
return (object->opt != NULL) ?
MixinInfo(interp, object->opt->objMixins, patternString, withGuards, patternObj) :
TCL_OK;
}
/*
objectInfoMethod mixinguard NsfObjInfoMixinguardMethod {
{-argName "mixin" -required 1}
}
*/
static int
NsfObjInfoMixinguardMethod(Tcl_Interp *interp, NsfObject *object, const char *mixin) {
assert(interp != NULL);
assert(object != NULL);
assert(mixin != NULL);
return (object->opt != NULL) ? GuardList(interp, object->opt->objMixins, mixin) : TCL_OK;
}
/*
objectInfoMethod name NsfObjInfoNameMethod {
}
*/
static int
NsfObjInfoNameMethod(Tcl_Interp *interp, NsfObject *object) {
assert(interp != NULL);
assert(object != NULL);
Tcl_SetObjResult(interp, Tcl_NewStringObj(Tcl_GetCommandName(interp, object->id), -1));
return TCL_OK;
}
/*
objectInfoMethod objectparameter NsfObjInfoObjectparameterMethod {
{-argName "infoobjectparametersubcmd" -type "definitions|list|names|syntax" -required 1}
{-argName "pattern" -required 0}
}
*/
/*
* Actually, this method (object::info::objectparameter) is not used anymore.
*/
static int
NsfObjInfoObjectparameterMethod(Tcl_Interp *interp, NsfObject *object, int subcmd, const char *pattern) {
NsfParsedParam parsedParam;
Tcl_Obj *listObj = NULL;
Nsf_Param const *paramsPtr;
Nsf_Param *paramList = NULL;
int result;
assert(interp != NULL);
assert(object != NULL);
result = GetObjectParameterDefinition(interp, NsfGlobalObjs[NSF_EMPTY],
object, NULL, &parsedParam);
if (result != TCL_OK || parsedParam.paramDefs == NULL) {
return result;
}
paramsPtr = parsedParam.paramDefs->paramsPtr;
if (pattern != NULL) {
paramList = NsfParamDefsFilter(interp, paramsPtr, pattern);
if (unlikely(paramList == NULL)) {
/*
* The named parameter were NOT found, so return "".
*/
Tcl_SetObjResult(interp, NsfGlobalObjs[NSF_EMPTY]);
return TCL_OK;
}
/* Iterate below over the computed selection */
paramsPtr = paramList;
}
switch (subcmd) {
case InfoobjectparametersubcmdDefinitionsIdx:
listObj = ParamDefsFormat(interp, paramsPtr, NULL, NULL);
break;
case InfoobjectparametersubcmdListIdx:
listObj = ParamDefsList(interp, paramsPtr, NULL, NULL);
break;
case InfoobjectparametersubcmdNamesIdx:
listObj = ParamDefsNames(interp, paramsPtr, NULL, NULL);
break;
case InfoobjectparametersubcmdSyntaxIdx:
listObj = NsfParamDefsSyntax(interp, paramsPtr, NULL, NULL);
break;
}
assert(listObj != NULL);
Tcl_SetObjResult(interp, listObj);
DECR_REF_COUNT2("paramDefsObj", listObj);
if (paramList != NULL) {
FREE(Nsf_Param*, paramList);
}
return TCL_OK;
}
/*
objectInfoMethod parent NsfObjInfoParentMethod {
}
*/
static int
NsfObjInfoParentMethod(Tcl_Interp *interp, NsfObject *object) {
assert(interp != NULL);
assert(object != NULL);
if (object->id != NULL) {
Tcl_Namespace *nsPtr = Tcl_Command_nsPtr(object->id);
Tcl_SetObjResult(interp, Tcl_NewStringObj((nsPtr != NULL) ? nsPtr->fullName : "", -1));
}
return TCL_OK;
}
/*
objectInfoMethod precedence NsfObjInfoPrecedenceMethod {
{-argName "-intrinsic"}
{-argName "pattern" -required 0}
}
*/
static int
NsfObjInfoPrecedenceMethod(Tcl_Interp *interp, NsfObject *object,
int withIntrinsicOnly, const char *pattern) {
NsfClasses *precedenceList, *pl;
Tcl_Obj *resultObj = Tcl_NewObj();
assert(interp != NULL);
assert(object != NULL);
precedenceList = ComputePrecedenceList(interp, object, pattern, !withIntrinsicOnly, 1);
for (pl = precedenceList; pl; pl = pl->nextPtr) {
assert(pl->cl);
Tcl_ListObjAppendElement(interp, resultObj, pl->cl->object.cmdName);
}
if (precedenceList != NULL) NsfClassListFree(precedenceList);
Tcl_SetObjResult(interp, resultObj);
return TCL_OK;
}
/*
objectInfoMethod slotobjects NsfObjInfoSlotobjectsMethod {
{-argName "-type" -required 0 -nrargs 1 -type class}
{-argName "pattern" -required 0}
}
*/
static int
NsfObjInfoSlotobjectsMethod(Tcl_Interp *interp, NsfObject *object,
NsfClass *type, const char *pattern) {
Tcl_Obj *listObj = Tcl_NewListObj(0, NULL);
assert(interp != NULL);
assert(object != NULL);
AddSlotObjects(interp, object, "::per-object-slot", NULL,
SourceAllIdx, type, pattern, listObj);
Tcl_SetObjResult(interp, listObj);
return TCL_OK;
}
/*
objectInfoMethod vars NsfObjInfoVarsMethod {
{-argName "pattern" -required 0}
}
*/
static int
NsfObjInfoVarsMethod(Tcl_Interp *interp, NsfObject *object, const char *pattern) {
Tcl_Obj *varList, *okList, *element;
int i, length;
TclVarHashTable *varTablePtr;
assert(interp != NULL);
assert(object != NULL);
varTablePtr = (object->nsPtr != NULL) ?
Tcl_Namespace_varTablePtr(object->nsPtr) :
object->varTablePtr;
ListVarKeys(interp, TclVarHashTablePtr(varTablePtr), pattern);
varList = Tcl_GetObjResult(interp);
Tcl_ListObjLength(interp, varList, &length);
okList = Tcl_NewListObj(0, NULL);
for (i = 0; i < length; i++) {
Tcl_ListObjIndex(interp, varList, i, &element);
if (VarExists(interp, object, ObjStr(element), NULL, NSF_VAR_REQUIRE_DEFINED)) {
Tcl_ListObjAppendElement(interp, okList, element);
} else {
/*fprintf(stderr, "must ignore '%s' %d\n", ObjStr(element), i);*/
/*Tcl_ListObjReplace(interp, varList, i, 1, 0, NULL);*/
}
}
Tcl_SetObjResult(interp, okList);
return TCL_OK;
}
/***********************************************************************
* End Object Info Methods
***********************************************************************/
/***********************************************************************
* Begin Class Info methods
***********************************************************************/
/*
classInfoMethod filterguard NsfClassInfoFilterguardMethod {
{-argName "filter" -required 1}
}
*/
static int
NsfClassInfoFilterguardMethod(Tcl_Interp *interp, NsfClass *class, const char *filter) {
assert(interp != NULL);
assert(class != NULL);
assert(filter != NULL);
return (class->opt != NULL) ? GuardList(interp, class->opt->classFilters, filter) : TCL_OK;
}
/*
classInfoMethod filters NsfClassInfoFiltersMethod {
{-argName "-guards" -nrargs 0 -type switch}
{-argName "pattern"}
}
*/
static int
NsfClassInfoFiltersMethod(Tcl_Interp *interp, NsfClass *class,
int withGuards, const char *pattern) {
assert(interp != NULL);
assert(class != NULL);
return (class->opt != NULL) ? FilterInfo(interp, class->opt->classFilters, pattern, withGuards, 0) : TCL_OK;
}
/*
classInfoMethod forward NsfClassInfoForwardMethod {
{-argName "-definition"}
{-argName "name"}
}
*/
static int
NsfClassInfoForwardMethod(Tcl_Interp *interp, NsfClass *class,
int withDefinition, const char *pattern) {
assert(interp != NULL);
assert(class != NULL);
return ListForward(interp, Tcl_Namespace_cmdTablePtr(class->nsPtr), pattern, withDefinition);
}
/*
classInfoMethod heritage NsfClassInfoHeritageMethod {
{-argName "pattern"}
}
*/
static int
NsfClassInfoHeritageMethod(Tcl_Interp *interp, NsfClass *cl, const char *pattern) {
NsfClasses *pl, *intrinsic, *checkList = NULL, *mixinClasses = NULL;
Tcl_Obj *resultObj;
assert(interp != NULL);
assert(cl != NULL);
resultObj = Tcl_NewObj();
intrinsic = PrecedenceOrder(cl);
NsfClassListAddPerClassMixins(interp, cl, &mixinClasses, &checkList);
for (pl = mixinClasses; pl; pl = pl->nextPtr) {
if (NsfClassListFind(pl->nextPtr, pl->cl) == NULL &&
NsfClassListFind(intrinsic, pl->cl) == NULL) {
AppendMatchingElement(interp, resultObj, pl->cl->object.cmdName, pattern);
}
}
if (intrinsic != NULL) {
for (pl = intrinsic->nextPtr; pl; pl = pl->nextPtr) {
AppendMatchingElement(interp, resultObj, pl->cl->object.cmdName, pattern);
}
}
if (mixinClasses != NULL) NsfClassListFree(mixinClasses);
if (checkList != NULL) NsfClassListFree(checkList);
Tcl_SetObjResult(interp, resultObj);
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* InstancesFromClassList --
*
* Collect all instances of the classes of the provided class list in the
* returned result object.
*
* Results:
* Tcl_Obj containing a list of instances or a single instance
*
* Side effects:
* Updated resultObj.
*
*----------------------------------------------------------------------
*/
static Tcl_Obj *InstancesFromClassList(Tcl_Interp *interp, NsfClasses *subClasses,
const char *pattern, NsfObject *matchObject)
nonnull(1) nonnull(2) returns_nonnull;
static Tcl_Obj *
InstancesFromClassList(Tcl_Interp *interp, NsfClasses *subClasses,
const char *pattern, NsfObject *matchObject) {
Tcl_Obj *resultObj = Tcl_NewObj();
assert(interp != NULL);
assert(subClasses != NULL);
do {
Tcl_HashTable *tablePtr = &subClasses->cl->instances;
Tcl_HashEntry *hPtr;
Tcl_HashSearch search;
for (hPtr = Tcl_FirstHashEntry(tablePtr, &search); hPtr;
hPtr = Tcl_NextHashEntry(&search)) {
NsfObject *inst = (NsfObject *) Tcl_GetHashKey(tablePtr, hPtr);
if (matchObject && inst == matchObject) {
Tcl_SetStringObj(resultObj, ObjStr(matchObject->cmdName), -1);
return resultObj;
}
AppendMatchingElement(interp, resultObj, inst->cmdName, pattern);
}
subClasses = subClasses->nextPtr;
} while (subClasses != NULL);
return resultObj;
}
/*
classInfoMethod instances NsfClassInfoInstancesMethod {
{-argName "-closure" -nrargs 0}
{-argName "pattern" -type objpattern}
}
*/
static int
NsfClassInfoInstancesMethod(Tcl_Interp *interp, NsfClass *startCl,
int withClosure, const char *pattern, NsfObject *matchObject) {
NsfClasses clElement, *subClasses;
assert(interp != NULL);
assert(startCl != NULL);
if (withClosure != 0) {
subClasses = TransitiveSubClasses(startCl);
} else {
subClasses = &clElement;
clElement.cl = startCl;
clElement.nextPtr = NULL;
}
Tcl_SetObjResult(interp, InstancesFromClassList(interp, subClasses, pattern, matchObject));
if (withClosure != 0) {
NsfClassListFree(subClasses);
}
return TCL_OK;
}
/*
classInfoMethod method NsfClassInfoMethodMethod {
{-argName "infomethodsubcmd" -type "args|body|definition|exists|registrationhandle|definitionhandle|origin|parameter|syntax|type|precondition|postcondition|submethods|returns"}
{-argName "name" -required 1 -type tclobj}
}
*/
static int
NsfClassInfoMethodMethod(Tcl_Interp *interp, NsfClass *class,
int subcmd, Tcl_Obj *methodNameObj) {
return ListMethodResolve(interp, subcmd, NULL, NULL, class->nsPtr, &class->object, methodNameObj, 1);
}
/*
classInfoMethod methods NsfClassInfoMethodsMethod {
{-argName "-callprotection" -type "all|public|protected|private" -default all}
{-argName "-closure" -nrargs 0}
{-argName "-type" -typeName "methodtype" -nrargs 1 -type "all|scripted|builtin|alias|forwarder|object|setter"}
{-argName "-path" -nrargs 0}
{-argName "-source" -nrargs 1 -type "all|application|system"}
{-argName "pattern"}
}
*/
static int
NsfClassInfoMethodsMethod(Tcl_Interp *interp, NsfClass *class,
int withCallprotection,
int withClosure,
int withMethodtype,
int withPath,
int withSource,
const char *pattern) {
assert(interp != NULL);
assert(class != NULL);
if (withClosure != 0) {
NsfClasses *checkList = NULL, *mixinClasses = NULL;
Tcl_HashTable dupsTable, *dups = &dupsTable;
int result;
#if 0
if (withCallprotection == CallprotectionNULL) {
withCallprotection = CallprotectionPublicIdx;
}
#endif
if (withSource == SourceNULL) {
withSource = SourceAllIdx;
}
Tcl_InitHashTable(dups, TCL_STRING_KEYS);
/* guards are ignored */
NsfClassListAddPerClassMixins(interp, class, &mixinClasses, &checkList);
(void) ListMethodKeysClassList(interp, mixinClasses,
withSource, pattern,
AggregatedMethodType(withMethodtype), withCallprotection,
withPath, dups, &class->object, 0);
if (checkList != NULL) NsfClassListFree(checkList);
if (mixinClasses != NULL) NsfClassListFree(mixinClasses);
result = ListMethodKeysClassList(interp, PrecedenceOrder(class),
withSource, pattern,
AggregatedMethodType(withMethodtype), withCallprotection,
withPath, dups, &class->object, 0);
Tcl_DeleteHashTable(dups);
return result;
} else {
if (withSource != 0) {
return NsfPrintError(interp, "-source cannot be used without -closure\n");
}
return ListDefinedMethods(interp, &class->object, pattern, 0 /* per-object */,
AggregatedMethodType(withMethodtype), withCallprotection,
withPath);
}
}
/*
classInfoMethod mixins NsfClassInfoMixinsMethod {
{-argName "-closure" -nrargs 0 -type switch}
{-argName "-guards" -nrargs 0 -type switch}
{-argName "-heritage" -nrargs 0 -type switch}
{-argName "pattern" -type objpattern}
}
*/
static int
NsfClassInfoMixinsMethod(Tcl_Interp *interp, NsfClass *class,
int withClosure, int withGuards, int withHeritage,
const char *patternString, NsfObject *patternObj) {
NsfClassOpt *opt;
Tcl_Obj *resultObj;
int result = TCL_OK;
assert(interp != NULL);
assert(class != NULL);
opt = class->opt;
Tcl_ResetResult(interp);
resultObj = Tcl_GetObjResult(interp);
if (withHeritage != 0) {
NsfClasses *checkList = NULL, *mixinClasses = NULL, *clPtr;
if (withGuards != 0) {
return NsfPrintError(interp, "-guards cannot be used together with -heritage\n");
}
NsfClassListAddPerClassMixins(interp, class, &mixinClasses, &checkList);
for (clPtr = mixinClasses; clPtr; clPtr = clPtr->nextPtr) {
if (NsfClassListFind(clPtr->nextPtr, clPtr->cl)) continue;
AppendMatchingElement(interp, resultObj, clPtr->cl->object.cmdName, patternString);
}
if (checkList != NULL) NsfClassListFree(checkList);
if (mixinClasses != NULL) NsfClassListFree(mixinClasses);
} else if (withClosure != 0) {
Tcl_HashTable objTable, *commandTable = &objTable;
int rc;
MEM_COUNT_ALLOC("Tcl_InitHashTable", commandTable);
Tcl_InitHashTable(commandTable, TCL_ONE_WORD_KEYS);
rc = GetAllClassMixins(interp, commandTable, resultObj,
class, withGuards,
patternString, patternObj);
if (patternObj && rc && !withGuards) {
Tcl_SetObjResult(interp, (rc != 0) ? patternObj->cmdName : NsfGlobalObjs[NSF_EMPTY]);
}
Tcl_DeleteHashTable(commandTable);
MEM_COUNT_FREE("Tcl_InitHashTable", commandTable);
} else {
result = (opt != NULL) ? MixinInfo(interp, opt->classMixins, patternString, withGuards, patternObj) : TCL_OK;
}
return result;
}
/*
classInfoMethod mixinguard NsfClassInfoMixinguardMethod {
{-argName "mixin" -required 1}
}
*/
static int
NsfClassInfoMixinguardMethod(Tcl_Interp *interp, NsfClass *class, const char *mixin) {
assert(interp != NULL);
assert(class != NULL);
assert(mixin != NULL);
return (class->opt != NULL) ? GuardList(interp, class->opt->classMixins, mixin) : TCL_OK;
}
/*
classInfoMethod mixinof NsfClassInfoMixinOfMethod {
{-argName "-closure" -nrargs 0}
{-argName "-scope" -required 0 -nrargs 1 -type "all|class|object"}
{-argName "pattern" -type objpattern}
}
*/
static int
NsfClassInfoMixinOfMethod(Tcl_Interp *interp, NsfClass *class, int withClosure, int withScope,
const char *patternString, NsfObject *patternObj) {
NsfClassOpt *opt;
int perClass, perObject, rc = TCL_OK;
Tcl_Obj *resultObj;
assert(interp != NULL);
assert(class != NULL);
opt = class->opt;
Tcl_ResetResult(interp);
resultObj = Tcl_GetObjResult(interp);
if (withScope == ScopeNULL || withScope == ScopeAllIdx) {
perClass = 1;
perObject = 1;
} else if (withScope == ScopeClassIdx) {
perClass = 1;
perObject = 0;
} else {
perClass = 0;
perObject = 1;
}
if (opt && !withClosure) {
if (perClass && opt->isClassMixinOf) {
rc = AppendMatchingElementsFromCmdList(interp, opt->isClassMixinOf, resultObj,
patternString, patternObj);
if (rc && patternObj) {goto finished;}
}
if (perObject == 1&& opt->isObjectMixinOf) {
rc = AppendMatchingElementsFromCmdList(interp, opt->isObjectMixinOf, resultObj,
patternString, patternObj);
}
} else if (withClosure != 0) {
Tcl_HashTable objTable, *commandTable = &objTable;
MEM_COUNT_ALLOC("Tcl_InitHashTable", commandTable);
Tcl_InitHashTable(commandTable, TCL_ONE_WORD_KEYS);
if (perClass == 1) {
rc = GetAllClassMixinsOf(interp, commandTable, resultObj,
class, 0, 1, patternString, patternObj);
if (rc && patternObj) {goto finished;}
}
if (perObject == 1) {
rc = GetAllObjectMixinsOf(interp, commandTable, resultObj,
class, 0, 1, patternString, patternObj);
}
Tcl_DeleteHashTable(commandTable);
MEM_COUNT_FREE("Tcl_InitHashTable", commandTable);
}
finished:
if (patternObj != NULL) {
Tcl_SetObjResult(interp, (rc != 0) ? patternObj->cmdName : NsfGlobalObjs[NSF_EMPTY]);
} else {
Tcl_SetObjResult(interp, resultObj);
}
return TCL_OK;
}
/*
classInfoMethod slots NsfClassInfoSlotobjectsMethod {
{-argName "-closure" -nrargs 0}
{-argName "-source" -nrargs 1 -type "all|application|system"}
{-argName "-type" -required 0 -nrargs 1 -type class}
{-argName "pattern" -required 0}
}
*/
static int
NsfClassInfoSlotobjectsMethod(Tcl_Interp *interp, NsfClass *class,
int withClosure, int withSource, NsfClass *type,
const char *pattern) {
NsfClasses *clPtr, *intrinsicClasses, *precedenceList = NULL;
Tcl_Obj *listObj = Tcl_NewListObj(0, NULL);
Tcl_HashTable slotTable;
assert(interp != NULL);
assert(class != NULL);
Tcl_ResetResult(interp);
intrinsicClasses = PrecedenceOrder(class);
if (withClosure != 0) {
NsfClasses *checkList = NULL, *mixinClasses = NULL;
/*
* Compute the closure: first the transitive mixin-classes...
*/
NsfClassListAddPerClassMixins(interp, class, &mixinClasses, &checkList);
for (clPtr = mixinClasses; clPtr; clPtr = clPtr->nextPtr) {
if (NsfClassListFind(clPtr->nextPtr, clPtr->cl) == NULL &&
NsfClassListFind(intrinsicClasses, clPtr->cl) == NULL) {
NsfClassListAdd(&precedenceList, clPtr->cl, NULL);
}
}
/*
* ... followed by the intrinsic classes.
*/
NsfClassListAdd(&precedenceList, class, NULL);
for (clPtr = intrinsicClasses->nextPtr; clPtr; clPtr = clPtr->nextPtr) {
NsfClassListAdd(&precedenceList, clPtr->cl, NULL);
}
if (checkList != NULL) NsfClassListFree(checkList);
if (mixinClasses != NULL) NsfClassListFree(mixinClasses);
} else {
NsfClassListAdd(&precedenceList, class, NULL);
}
/* NsfClassListPrint("precedence", precedenceList); */
if (withSource == 0) {withSource = 1;}
/*
* Use a hash-table to eliminate potential duplicates.
*/
Tcl_InitHashTable(&slotTable, TCL_STRING_KEYS);
MEM_COUNT_ALLOC("Tcl_InitHashTable", &slotTable);
for (clPtr = precedenceList; clPtr; clPtr = clPtr->nextPtr) {
if (MethodSourceMatches(withSource, clPtr->cl, NULL)) {
AddSlotObjects(interp, &clPtr->cl->object, "::slot", &slotTable,
withSource, type, pattern, listObj);
}
}
Tcl_DeleteHashTable(&slotTable);
MEM_COUNT_FREE("Tcl_InitHashTable", &slotTable);
if (precedenceList != NULL) NsfClassListFree(precedenceList);
Tcl_SetObjResult(interp, listObj);
return TCL_OK;
}
/*
classInfoMethod subclass NsfClassInfoSubclassMethod {
{-argName "-closure" -nrargs 0 -type switch}
{-argName "-dependent" -nrargs 0 -type switch}
{-argName "pattern" -type objpattern}
}
*/
static int
NsfClassInfoSubclassMethod(Tcl_Interp *interp, NsfClass *class,
int withClosure, int withDependent,
const char *patternString, NsfObject *patternObj) {
int rc = 0;
assert(interp != NULL);
assert(class != NULL);
if (withClosure && withDependent) {
return NsfPrintError(interp, "only -closure or -dependent can be specified, not both");
}
if (withClosure || withDependent) {
NsfClasses *subClasses = (withClosure != 0) ? TransitiveSubClasses(class) : DependentSubClasses(class);
if (subClasses != NULL) {
rc = AppendMatchingElementsFromClasses(interp, subClasses, patternString, patternObj);
NsfClassListFree(subClasses);
}
} else if (class->sub != NULL) {
rc = AppendMatchingElementsFromClasses(interp, class->sub, patternString, patternObj);
}
if (patternObj != NULL) {
Tcl_SetObjResult(interp, (rc != 0) ? patternObj->cmdName : NsfGlobalObjs[NSF_EMPTY]);
}
return TCL_OK;
}
/*
classInfoMethod superclass NsfClassInfoSuperclassMethod {
{-argName "-closure" -nrargs 0}
{-argName "pattern" -type tclobj}
}
*/
static int
NsfClassInfoSuperclassMethod(Tcl_Interp *interp, NsfClass *class, int withClosure, Tcl_Obj *pattern) {
assert(interp != NULL);
assert(class != NULL);
return ListSuperClasses(interp, class, pattern, withClosure);
}
/***********************************************************************
* End Class Info methods
***********************************************************************/
/*
* Initialization and Exit handlers
*/
#ifdef DO_FULL_CLEANUP
/* delete global variables and procs */
static void DeleteProcsAndVars(Tcl_Interp *interp, Tcl_Namespace *nsPtr, int withKeepvars)
nonnull(1) nonnull(2);
static void
DeleteProcsAndVars(Tcl_Interp *interp, Tcl_Namespace *nsPtr, int withKeepvars) {
Tcl_HashTable *varTablePtr, *cmdTablePtr, *childTablePtr;
Tcl_HashSearch search;
Tcl_Command cmd;
Var *varPtr;
register Tcl_HashEntry *entryPtr;
assert(interp != NULL);
assert(nsPtr != NULL);
/* fprintf(stderr, "DeleteProcsAndVars in %s\n", nsPtr->fullName); */
varTablePtr = (Tcl_HashTable *)Tcl_Namespace_varTablePtr(nsPtr);
cmdTablePtr = Tcl_Namespace_cmdTablePtr(nsPtr);
childTablePtr = Tcl_Namespace_childTablePtr(nsPtr);
/*
* Deleting the procs and vars in the child namespaces does not seem to be
* necessary, but we do it anyway.
*/
for (entryPtr = Tcl_FirstHashEntry(childTablePtr, &search); entryPtr;
entryPtr = Tcl_NextHashEntry(&search)) {
Tcl_Namespace *childNsPtr = (Tcl_Namespace *) Tcl_GetHashValue(entryPtr);
DeleteProcsAndVars(interp, childNsPtr, withKeepvars);
}
if (withKeepvars == 0) {
for (entryPtr = Tcl_FirstHashEntry(varTablePtr, &search); entryPtr;
entryPtr = Tcl_NextHashEntry(&search)) {
Tcl_Obj *nameObj;
GetVarAndNameFromHash(entryPtr, &varPtr, &nameObj);
if (!TclIsVarUndefined(varPtr) || TclIsVarNamespaceVar(varPtr)) {
/* fprintf(stderr, "unsetting var %s\n", ObjStr(nameObj));*/
Tcl_UnsetVar2(interp, ObjStr(nameObj), (char *)NULL, TCL_GLOBAL_ONLY);
}
}
}
for (entryPtr = Tcl_FirstHashEntry(cmdTablePtr, &search); entryPtr;
entryPtr = Tcl_NextHashEntry(&search)) {
cmd = (Tcl_Command)Tcl_GetHashValue(entryPtr);
if (Tcl_Command_objProc(cmd) == RUNTIME_STATE(interp)->objInterpProc) {
/*fprintf(stderr, "cmdname = %s cmd %p proc %p objProc %p %d\n",
Tcl_GetHashKey(cmdTablePtr, entryPtr), cmd, Tcl_Command_proc(cmd), Tcl_Command_objProc(cmd),
Tcl_Command_proc(cmd)==RUNTIME_STATE(interp)->objInterpProc);*/
Tcl_DeleteCommandFromToken(interp, cmd);
}
}
}
#endif
/*
*----------------------------------------------------------------------
*
* FinalObjectDeletion --
*
* The method is to be called, when an object is finally deleted,
* typically during the final cleanup. It tests as well the actication
* count of the object.
*
* Results:
* None.
*
* Side effects:
* Deletion of the objects.
*
*----------------------------------------------------------------------
*/
static void
FinalObjectDeletion(Tcl_Interp *interp, NsfObject *object) {
assert(interp != NULL);
assert(object != NULL);
/*
* If a call to exit happens from a higher stack frame, the object
* refCount might not be decremented correctly. If we are in the
* physical destroy round, we can set the counter to an appropriate
* value to ensure deletion.
*/
#if defined(NSF_DEVELOPMENT)
if (unlikely(object->refCount != 1)) {
if (object->refCount > 1) {
NsfLog(interp, NSF_LOG_WARN, "RefCount for obj %p %d (name %s) > 1",
(void *)object, object->refCount, ObjectName(object));
} else {
NsfLog(interp, NSF_LOG_WARN, "Refcount for obj %p %d > 1",
(void *)object, object->refCount);
}
/*object->refCount = 1;*/
}
#endif
#if !defined(NDEBUG)
if (unlikely(object->activationCount != 0)) {
fprintf(stderr, "FinalObjectDeletion obj %p activationcount %d\n",
(void *)object, object->activationCount);
}
#endif
assert(object->activationCount == 0);
if (likely(object->id != NULL)) {
/*fprintf(stderr, " ... cmd dealloc %p final delete refCount %d\n",
object->id, Tcl_Command_refCount(object->id));*/
if (NSF_DTRACE_OBJECT_FREE_ENABLED()) {
NSF_DTRACE_OBJECT_FREE(ObjectName(object), ClassName(object->cl));
}
Tcl_DeleteCommandFromToken(interp, object->id);
}
}
#ifdef DO_CLEANUP
/*
*----------------------------------------------------------------------
*
* DeleteNsfProcs --
*
* Delete all nsfprocs in the namespaces rooted by the second
* argument. If the provided nsPtr is NULL, the global namespace is used
* as root of the namespace tree. The function is necessary to trigger
* the freeing of the parameter definitions.
*
* Results:
* None.
*
* Side effects:
* Deletion of nsfprocs.
*
*----------------------------------------------------------------------
*/
static void DeleteNsfProcs(Tcl_Interp *interp, Tcl_Namespace *nsPtr) nonnull(1);
static void
DeleteNsfProcs(Tcl_Interp *interp, Tcl_Namespace *nsPtr) {
Tcl_HashTable *cmdTablePtr, *childTablePtr;
register Tcl_HashEntry *entryPtr;
Tcl_HashSearch search;
assert(interp != NULL);
if (nsPtr == NULL) {
nsPtr = Tcl_GetGlobalNamespace(interp);
}
assert(nsPtr != NULL);
/*fprintf(stderr, "### DeleteNsfProcs current namespace '%s'\n", (nsPtr != NULL) ? nsPtr->fullName : "NULL");*/
cmdTablePtr = Tcl_Namespace_cmdTablePtr(nsPtr);
childTablePtr = Tcl_Namespace_childTablePtr(nsPtr);
for (entryPtr = Tcl_FirstHashEntry(cmdTablePtr, &search); entryPtr;
entryPtr = Tcl_NextHashEntry(&search)) {
Tcl_Command cmd = (Tcl_Command)Tcl_GetHashValue(entryPtr);
if (Tcl_Command_objProc(cmd) == NsfProcStub) {
/*fprintf(stderr, "cmdname = %s cmd %p\n",
Tcl_GetHashKey(cmdTablePtr, entryPtr), cmd);*/
Tcl_DeleteCommandFromToken(interp, cmd);
}
}
for (entryPtr = Tcl_FirstHashEntry(childTablePtr, &search); entryPtr;
entryPtr = Tcl_NextHashEntry(&search)) {
Tcl_Namespace *childNsPtr = (Tcl_Namespace *) Tcl_GetHashValue(entryPtr);
DeleteNsfProcs(interp, childNsPtr);
}
}
/*
*----------------------------------------------------------------------
*
* ClassHasSubclasses --
*
* Check, whether the given class has subclasses.
*
* Results:
* boolean
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int ClassHasSubclasses(NsfClass *cl) nonnull(1);
static int
ClassHasSubclasses(NsfClass *cl) {
assert(cl != NULL);
return (cl->sub != NULL);
}
/*
*----------------------------------------------------------------------
*
* ClassHasInstances --
*
* Check, whether the given class has instances.
*
* Results:
* boolean
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int ClassHasInstances(NsfClass *cl) nonnull(1);
static int
ClassHasInstances(NsfClass *cl) {
Tcl_HashSearch hSrch;
assert(cl != NULL);
return (Tcl_FirstHashEntry(&cl->instances, &hSrch) != NULL);
}
/*
*----------------------------------------------------------------------
*
* ObjectHasChildren --
*
* Check, whether the given object has children
*
* Results:
* boolean
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static int ObjectHasChildren(NsfObject *object) nonnull(1);
static int
ObjectHasChildren(NsfObject *object) {
Tcl_Namespace *ns;
int result = 0;
assert(object != NULL);
ns = object->nsPtr;
if (ns != NULL) {
Tcl_HashEntry *hPtr;
Tcl_HashSearch hSrch;
Tcl_HashTable *cmdTablePtr = Tcl_Namespace_cmdTablePtr(ns);
for (hPtr = Tcl_FirstHashEntry(cmdTablePtr, &hSrch); hPtr;
hPtr = Tcl_NextHashEntry(&hSrch)) {
Tcl_Command cmd = Tcl_GetHashValue(hPtr);
NsfObject *childObject = NsfGetObjectFromCmdPtr(cmd);
if (childObject != NULL) {
result = 1;
break;
}
}
}
return result;
}
/*
*----------------------------------------------------------------------
*
* FreeAllNsfObjectsAndClasses --
*
* Destroy and free all objects and classes defined int the interp.
*
* Results:
* None.
*
* Side effects:
* Freeing memory.
*
*----------------------------------------------------------------------
*/
static void FreeAllNsfObjectsAndClasses(Tcl_Interp *interp, NsfCmdList **instances)
nonnull(1) nonnull(2);
static void
FreeAllNsfObjectsAndClasses(Tcl_Interp *interp, NsfCmdList **instances) {
NsfCmdList *entry, *lastEntry;
int deleted = 0;
assert(interp != NULL);
assert(instances != NULL);
/*fprintf(stderr, "FreeAllNsfObjectsAndClasses in %p\n", interp);*/
RUNTIME_STATE(interp)->exitHandlerDestroyRound = NSF_EXITHANDLER_ON_PHYSICAL_DESTROY;
/*
* First delete all child commands of all objects, which are not
* objects themselves. This will for example delete namespace
* imported commands and objects and will resolve potential loops in
* the dependency graph. The result is a plain object/class tree.
*/
for (entry = *instances; entry; entry = entry->nextPtr) {
NsfObject *object = (NsfObject *)entry->clorobj;
/* delete per-object methods */
if (object && object->nsPtr) {
Tcl_HashEntry *hPtr;
Tcl_HashSearch hSrch;
for (hPtr = Tcl_FirstHashEntry(Tcl_Namespace_cmdTablePtr(object->nsPtr), &hSrch); hPtr;
hPtr = Tcl_NextHashEntry(&hSrch)) {
Tcl_Command cmd = Tcl_GetHashValue(hPtr);
if (cmd != NULL) {
if (CmdIsNsfObject(cmd)) {
AliasDeleteObjectReference(interp, cmd);
continue;
}
Tcl_DeleteCommandFromToken(interp, cmd);
deleted ++;
}
}
}
/*
* Delete class methods; these methods might have aliases (dependencies) to
* objects, which will resolved this way.
*/
if (object && NsfObjectIsClass(object)) {
Tcl_HashEntry *hPtr;
Tcl_HashSearch hSrch;
for (hPtr = Tcl_FirstHashEntry(Tcl_Namespace_cmdTablePtr(((NsfClass *)object)->nsPtr),
&hSrch); hPtr;
hPtr = Tcl_NextHashEntry(&hSrch)) {
Tcl_Command cmd = Tcl_GetHashValue(hPtr);
if (cmd && CmdIsNsfObject(cmd)) {
AliasDeleteObjectReference(interp, cmd);
continue;
}
}
}
}
/*fprintf(stderr, "deleted %d cmds\n", deleted);*/
/*
* Finally delete the object/class tree in a bottom up manner,
* deleting all objects without dependencies first. Finally, only
* the root classes of the object system will remain, which are
* deleted separately.
*/
while (1) {
/*
* Delete all plain objects without dependencies.
*/
deleted = 0;
for (entry = *instances, lastEntry = NULL;
entry;
lastEntry = entry, entry = entry->nextPtr) {
NsfObject *object = (NsfObject *)entry->clorobj;
/*
* The list of the instances should contain only alive objects, without
* duplicates. We would recognize duplicates since a deletion of one
* object would trigger the CMD_IS_DELETED flag of the cmdPtr of the
* duplicate.
*/
assert((Tcl_Command_flags(entry->cmdPtr) & CMD_IS_DELETED) == 0);
if (object && !NsfObjectIsClass(object) && !ObjectHasChildren(object)) {
/*fprintf(stderr, "check %p obj->flags %.6x cmd %p deleted %d\n",
object, object->flags, entry->cmdPtr,
Tcl_Command_flags(entry->cmdPtr) & CMD_IS_DELETED); */
assert(object->id);
/*fprintf(stderr, " ... delete object %s %p, class=%s id %p ns %p\n",
ObjectName(object), object,
ClassName(object->cl), object->id, object->nsPtr);*/
FreeUnsetTraceVariable(interp, object);
FinalObjectDeletion(interp, object);
if (entry == *instances) {
*instances = entry->nextPtr;
CmdListDeleteCmdListEntry(entry, NULL);
entry = *instances;
} else {
lastEntry->nextPtr = entry->nextPtr;
CmdListDeleteCmdListEntry(entry, NULL);
entry = lastEntry;
}
assert(entry != NULL);
deleted++;
}
}
/*fprintf(stderr, "deleted %d Objects without dependencies\n", deleted);*/
if (deleted > 0) {
continue;
}
/*
* Delete all classes without dependencies.
*/
for (entry = *instances, lastEntry = NULL;
entry;
lastEntry = entry, entry = entry->nextPtr) {
NsfClass *cl = entry->clorobj;
assert(cl != NULL);
if (!NsfObjectIsClass(&cl->object)) {
continue;
}
/*fprintf(stderr, "cl key = %s %p\n", ClassName(cl), cl); */
if (!ObjectHasChildren((NsfObject *)cl)
&& !ClassHasInstances(cl)
&& !ClassHasSubclasses(cl)
&& !IsBaseClass(&cl->object)
) {
/*fprintf(stderr, " ... delete class %s %p\n", ClassName(cl), cl); */
assert(cl->object.id);
FreeUnsetTraceVariable(interp, &cl->object);
FinalObjectDeletion(interp, &cl->object);
if (entry == *instances) {
*instances = entry->nextPtr;
/*fprintf(stderr, "... delete first entry %p\n", entry);*/
CmdListDeleteCmdListEntry(entry, NULL);
entry = *instances;
} else {
/*fprintf(stderr, "... delete entry %p\n", entry);*/
lastEntry->nextPtr = entry->nextPtr;
CmdListDeleteCmdListEntry(entry, NULL);
entry = lastEntry;
}
deleted++;
}
}
/*fprintf(stderr, "deleted %d Classes\n", deleted);*/
if (deleted == 0) {
int reclassed = 0;
/*
* Final check. If there are no cyclical dependencies, we should have
* now just the the base classes left. If this is not the case, reclass
* the remaining objects to their base classes, and set the superClasses
* to the most general superclass.
*/
for (entry = *instances;
entry;
entry = entry->nextPtr) {
NsfObject *object = (NsfObject *)entry->clorobj;
NsfClass *baseClass;
NsfObjectSystem *osPtr;
if (NsfObjectIsClass(object) && IsBaseClass(object)) {
continue;
}
osPtr = GetObjectSystem(object);
/*
* For classes, check the superclass hierarchy.
*/
if (NsfObjectIsClass(object)) {
NsfClass *cl = (NsfClass *)object;
NsfClasses *sc;
for (sc = cl->super; sc; sc = sc->nextPtr) {
if (sc->cl != osPtr->rootClass) {
Tcl_Obj *objectName = osPtr->rootClass->object.cmdName;
SuperclassAdd(interp, cl, 1, &objectName, objectName);
reclassed ++;
break;
}
}
}
/*
* In all cases, straigthen the class to the base case.
*/
baseClass = NsfObjectIsClass(object) ? osPtr->rootMetaClass : osPtr->rootClass;
if (object->cl != baseClass) {
ChangeClass(interp, object, baseClass);
reclassed ++;
}
}
/*fprintf(stderr, "We have reclassed %d objects\n", reclassed);*/
if (reclassed == 0) {
break;
}
}
}
}
#endif /* DO_CLEANUP */
/*
* Exit Handler
*/
static void ExitHandler(ClientData clientData) nonnull(1);
static void
ExitHandler(ClientData clientData) {
Tcl_Interp *interp = (Tcl_Interp *)clientData;
int i, flags;
NsfRuntimeState *rst = RUNTIME_STATE(interp);
assert(clientData != NULL);
/*fprintf(stderr, "ExitHandler\n");*/
/*
* Don't use exit handler, if the interpreter is already destroyed.
* Call to exit handler comes after freeing namespaces, commands, etc.
* e.g. TK calls Tcl_DeleteInterp directly, if Window is killed.
*/
/*
* Ahem ...
*
* Since we *must* be sure that our destroy methods will run
* we must *cheat* (I mean CHEAT) here: we flip the interp
* flag, saying, "hey boy, you're not deleted any more".
* After our handlers are done, we restore the old state...
* All this is needed so we can do an eval in the interp which
* is potentially marked for delete when we start working here.
*
* I know, I know, this is not really elegant. But... I'd need a
* standard way of invoking some code at interpreter delete time
* but JUST BEFORE the actual deletion process starts. Sadly,
* there is no such hook in Tcl as of Tcl8.4.*, that I know of.
*
* So, for the rest of procedure, assume the interp is alive !
*/
flags = Tcl_Interp_flags(interp);
Tcl_Interp_flags(interp) &= ~DELETED;
CallStackPopAll(interp);
if (rst->exitHandlerDestroyRound == NSF_EXITHANDLER_OFF) {
NsfFinalizeCmd(interp, 0);
}
/* Must be before freeing of NsfGlobalObjs */
NsfShadowTclCommands(interp, SHADOW_UNLOAD);
MEM_COUNT_FREE("Tcl_InitHashTable", &rst->activeFilterTablePtr);
Tcl_DeleteHashTable(&rst->activeFilterTablePtr);
/* free global objects */
for (i = 0; i < nr_elements(NsfGlobalStrings); i++) {
DECR_REF_COUNT(NsfGlobalObjs[i]);
}
NsfStringIncrFree(&rst->iss);
/*
* Free all data in the pointer converter.
*/
Nsf_PointerExit(interp);
#if defined(NSF_PROFILE)
NsfProfileFree(interp);
#endif
FREE(Tcl_Obj**, NsfGlobalObjs);
#if defined(TCL_MEM_DEBUG)
TclDumpMemoryInfo((ClientData) stderr, 0);
Tcl_DumpActiveMemory("./nsfActiveMem");
/* Tcl_Eval(interp, "puts {checkmem to checkmemFile};
checkmem checkmemFile"); */
#endif
/*
* Free runtime state.
*/
ckfree((char *) RUNTIME_STATE(interp));
#if USE_ASSOC_DATA
Tcl_DeleteAssocData(interp, "NsfRuntimeState");
#else
Tcl_Interp_globalNsPtr(interp)->clientData = NULL;
#endif
#if defined(NSF_MEM_COUNT) && !defined(PRE86)
/*
* When raising an error, the Tcl_Objs on the error stack and in the
* inner context are refCount-incremented. When Tcl exits, it does normally
* not perform the according decrementing. We perform here a manual
* decrementing and reset these lists.
*/
{
Interp *iPtr = (Interp *) interp;
if (iPtr->innerContext != NULL) {
Tcl_DecrRefCount(iPtr->errorStack);
iPtr->errorStack = Tcl_NewListObj(0, NULL);
Tcl_IncrRefCount(iPtr->errorStack);
Tcl_DecrRefCount(iPtr->innerContext);
iPtr->innerContext = Tcl_NewListObj(0, NULL);
Tcl_IncrRefCount(iPtr->innerContext);
}
}
#endif
Tcl_Interp_flags(interp) = flags;
Tcl_Release(interp);
MEM_COUNT_RELEASE();
}
#if defined(TCL_THREADS)
/*
* Gets activated at thread-exit
*/
static void Nsf_ThreadExitProc(ClientData clientData) nonnull(1);
static void
Nsf_ThreadExitProc(ClientData clientData) {
/*fprintf(stderr, "+++ Nsf_ThreadExitProc\n");*/
void Nsf_ExitProc(ClientData clientData);
assert(clientData != NULL);
Tcl_DeleteExitHandler(Nsf_ExitProc, clientData);
ExitHandler(clientData);
}
#endif
/*
* Gets activated at application-exit
*/
void Nsf_ExitProc(ClientData clientData) nonnull(1);
void
Nsf_ExitProc(ClientData clientData) {
assert(clientData != NULL);
/*fprintf(stderr, "+++ Nsf_ExitProc\n");*/
#if defined(TCL_THREADS)
Tcl_DeleteThreadExitHandler(Nsf_ThreadExitProc, clientData);
#endif
ExitHandler(clientData);
}
/*
* Registers thread/application exit handlers.
*/
static void RegisterExitHandlers(ClientData clientData) nonnull(1);
static void
RegisterExitHandlers(ClientData clientData) {
assert(clientData != NULL);
Tcl_Preserve(clientData);
#if defined(TCL_THREADS)
Tcl_CreateThreadExitHandler(Nsf_ThreadExitProc, clientData);
#endif
Tcl_CreateExitHandler(Nsf_ExitProc, clientData);
}
/*
* Tcl extension initialization routine
*/
#if 0
#include
#endif
int Nsf_Init(Tcl_Interp *interp) nonnull(1);
int
Nsf_Init(Tcl_Interp *interp) {
static NsfMutex initMutex = 0;
ClientData runtimeState;
NsfRuntimeState *rst;
int result, i;
#ifdef NSF_BYTECODE
/*NsfCompEnv *interpstructions = NsfGetCompEnv();*/
#endif
#ifdef USE_TCL_STUBS
static int stubsInitialized = 0;
#endif
assert(interp != NULL);
#if 0
ProfilerStart("profiler");
#endif
#ifdef USE_TCL_STUBS
/*
* Since the stub-tables are initialized globally (not per interp), we want
* to initialize these only once. The read operation on "stubsInitialized"
* is a potentially dirty read. However, we can't use a mutex lock around
* this, since Tcl_MutexLock() requires (at least on some platforms)
* initialized stub-tables. The dirty read of stubsInitialized is not so
* invasive as the dirty reads caused by overwriting the stub tables.
*
* NsfMutexLock(&stubFlagMutex);
* ...
* NsfMutexUnlock(&stubFlagMutex);
*/
if (stubsInitialized == 0) {
if (Tcl_InitStubs(interp, "8.5", 0) == NULL) {
return TCL_ERROR;
}
if (Tcl_TomMath_InitStubs(interp, "8.5") == NULL) {
return TCL_ERROR;
}
stubsInitialized = 1;
}
#endif
#if defined(TCL_MEM_DEBUG)
TclDumpMemoryInfo((ClientData) stderr, 0);
#endif
/*
* Runtime State stored in the client data of the Interp's global namespace
* in order to avoid global state information. All fields are per default
* set to zero.
*/
runtimeState = ckalloc(sizeof(NsfRuntimeState));
memset(runtimeState, 0, sizeof(NsfRuntimeState));
#if USE_ASSOC_DATA
Tcl_SetAssocData(interp, "NsfRuntimeState", NULL, runtimeState);
#else
Tcl_Interp_globalNsPtr(interp)->clientData = runtimeState;
#endif
/*
* If MEM_COUNT is activated, the tables have to be initialized before the
* first call to the MEM_COUNT macros (including e.g. INCR_REF_COUNT), but
* it requires that the runtimeState is already associated with the interp.
*/
MEM_COUNT_INIT();
/*
* Init global variables for Tcl_Obj types.
*/
NsfMutexLock(&initMutex);
Nsf_OT_byteCodeType = Tcl_GetObjType("bytecode");
assert(Nsf_OT_byteCodeType);
Nsf_OT_tclCmdNameType = Tcl_GetObjType("cmdName");
assert(Nsf_OT_tclCmdNameType);
Nsf_OT_listType = Tcl_GetObjType("list");
assert(Nsf_OT_listType);
Nsf_OT_intType = Tcl_GetObjType("int");
assert(Nsf_OT_intType);
Nsf_OT_doubleType = Tcl_GetObjType("double");
assert(Nsf_OT_doubleType);
NsfMutexUnlock(&initMutex);
/*
* Initialize the pointer converter, the enumeration types and cmd
* definitions tables and load it with the generated information for
* introspection.
*/
Nsf_PointerInit(interp);
Nsf_EnumerationTypeInit(interp);
result = Nsf_EnumerationTypeRegister(interp, enumeratorConverterEntries);
if (unlikely(result != TCL_OK)) {
return result;
}
Nsf_CmdDefinitionInit(interp);
Nsf_CmdDefinitionRegister(interp, method_definitions);
/*
fprintf(stderr, "SIZES: obj=%d, tcl_obj=%d, DString=%d, class=%d, namespace=%d, command=%d, HashTable=%d\n",
sizeof(NsfObject), sizeof(Tcl_Obj), sizeof(Tcl_DString), sizeof(NsfClass),
sizeof(Namespace), sizeof(Command), sizeof(Tcl_HashTable));
*/
#if defined(NSF_PROFILE)
NsfProfileInit(interp);
#endif
rst = RUNTIME_STATE(interp);
rst->doFilters = 1;
rst->doCheckResults = 1;
rst->doCheckArguments = NSF_ARGPARSE_CHECK;
#if defined(NSF_STACKCHECK)
{ int someVar;
/*
* Note that Nsf_Init() is called typically via a package require, which
* is therefore not really the bottom of the stack, but just a first
* approximization.
*/
rst->bottomOfStack = &someVar;
rst->maxStack = rst->bottomOfStack;
}
#endif
/*
* Check, if the namespace exists, otherwise create it.
*/
rst->NsfNS = Tcl_FindNamespace(interp, "::nsf", NULL, TCL_GLOBAL_ONLY);
if (rst->NsfNS == NULL) {
rst->NsfNS = Tcl_CreateNamespace(interp, "::nsf", NULL,
(Tcl_NamespaceDeleteProc *)NULL);
}
MEM_COUNT_ALLOC("TclNamespace", rst->NsfNS);
/*
* Init an empty, faked proc structure in the RUNTIME state.
*/
rst->fakeProc.iPtr = (Interp *)interp;
rst->fakeProc.refCount = 1;
rst->fakeProc.cmdPtr = NULL;
rst->fakeProc.bodyPtr = NULL;
rst->fakeProc.numArgs = 0;
rst->fakeProc.numCompiledLocals = 0;
rst->fakeProc.firstLocalPtr = NULL;
rst->fakeProc.lastLocalPtr = NULL;
/*
* NsfClasses in separate Namespace / Objects
*/
rst->NsfClassesNS =
Tcl_CreateNamespace(interp, "::nsf::classes", NULL,
(Tcl_NamespaceDeleteProc *)NULL);
MEM_COUNT_ALLOC("TclNamespace", rst->NsfClassesNS);
/*
* Cache interpreters proc interpretation functions
*/
rst->objInterpProc = TclGetObjInterpProc();
rst->exitHandlerDestroyRound = NSF_EXITHANDLER_OFF;
RegisterExitHandlers(interp);
NsfStringIncrInit(&RUNTIME_STATE(interp)->iss);
/*
* initialize global Tcl_Obj
*/
NsfGlobalObjs = NEW_ARRAY(Tcl_Obj*, nr_elements(NsfGlobalStrings));
for (i = 0; i < nr_elements(NsfGlobalStrings); i++) {
NsfGlobalObjs[i] = Tcl_NewStringObj(NsfGlobalStrings[i], -1);
INCR_REF_COUNT(NsfGlobalObjs[i]);
}
Tcl_InitHashTable(&rst->activeFilterTablePtr, TCL_STRING_KEYS);
MEM_COUNT_ALLOC("Tcl_InitHashTable", &rst->activeFilterTablePtr);
/*
* Create namespaces for the different command types.
*/
Tcl_CreateNamespace(interp, "::nsf::cmd", 0, (Tcl_NamespaceDeleteProc *)NULL);
for (i = 0; i < nr_elements(method_command_namespace_names); i++) {
Tcl_CreateNamespace(interp, method_command_namespace_names[i], 0, (Tcl_NamespaceDeleteProc *)NULL);
}
/*
* Create all method commands (will use the namespaces above).
*/
for (i = 0; i < nr_elements(method_definitions)-1; i++) {
Tcl_CreateObjCommand(interp, method_definitions[i].methodName, method_definitions[i].proc, 0, 0);
}
/*
* Create Shadowed Tcl cmds:
*/
result = NsfShadowTclCommands(interp, SHADOW_LOAD);
if (unlikely(result != TCL_OK)) {
return result;
}
/*
* Create new Tcl cmds:
*/
#ifdef NSF_BYTECODE
instructions[INST_NEXT].cmdPtr = (Command *)
#endif
Tcl_CreateObjCommand(interp, "::nsf::xotclnext", NsfNextObjCmd, 0, 0);
#ifdef NSF_BYTECODE
instructions[INST_SELF].cmdPtr =
(Command *)Tcl_FindCommand(interp, "::nsf::current", NULL, TCL_GLOBAL_ONLY);
#endif
/*Tcl_CreateObjCommand(interp, "::nsf::K", NsfKObjCmd, 0, 0);*/
#ifdef NSF_BYTECODE
NsfBytecodeInit();
#endif
NsfReportVars(interp);
Tcl_AddInterpResolvers(interp,"nsf",
(Tcl_ResolveCmdProc *)InterpColonCmdResolver,
InterpColonVarResolver,
(Tcl_ResolveCompiledVarProc *)InterpCompiledColonVarResolver);
rst->colonCmd = Tcl_FindCommand(interp, "::nsf::colon", NULL, TCL_GLOBAL_ONLY);
/*
* Tcl occasionally resolves a proc's cmd structure (e.g., in
* [info frame /number/] or TclInfoFrame()) without
* verification. However, NSF non-proc frames, in particular
* initcmd blocks, point to the fakeProc structure which does not
* contain a initialized Command pointer. For now, we default to
* an internal command. However, we might have to revisit this decision
* as non-proc frames (e.g., initcmds) report a "proc" entry
* for c-based functions with a proc scope, such as "::nsf::colon"),
* which can lead to confusions. "proc" does not mean "tcp proc",
* but an entry with a proc frame for local vars.
*/
rst->fakeProc.cmdPtr = (Command *)RUNTIME_STATE(interp)->colonCmd;
{
/*
* The file "predefined.h" contains some methods and library procs
* implemented in Tcl - they could go in a nsf.tcl file, but
* they're embedded here with Tcl_Eval to avoid the need to
* carry around a separate file at runtime.
*/
#include "predefined.h"
/* fprintf(stderr, "predefined=<<%s>>\n", cmd);*/
if (Tcl_Eval(interp, cmd) != TCL_OK) {
static char cmd[] =
"puts stderr \"Error in predefined code\n\
$::errorInfo\"";
Tcl_EvalEx(interp, cmd, -1, 0);
return TCL_ERROR;
}
}
#ifndef AOL_SERVER
/* the AOL server uses a different package loading mechanism */
# ifdef COMPILE_NSF_STUBS
Tcl_PkgProvideEx(interp, "nsf", PACKAGE_VERSION, &nsfStubs);
# else
Tcl_PkgProvide(interp, "nsf", PACKAGE_VERSION);
# endif
#endif
/*
* Obtain type for parsed var name.
*/
if (Nsf_OT_parsedVarNameType == NULL) {
Tcl_Obj *varNameObj = Tcl_NewStringObj("::nsf::version",-1);
Var *arrayPtr;
INCR_REF_COUNT(varNameObj);
TclObjLookupVar(interp, varNameObj, NULL, 0, "access",
/*createPart1*/ 1, /*createPart2*/ 1, &arrayPtr);
Nsf_OT_parsedVarNameType = varNameObj->typePtr;
assert(Nsf_OT_parsedVarNameType);
DECR_REF_COUNT(varNameObj);
}
#if !defined(TCL_THREADS)
if ((Tcl_GetVar2(interp, "tcl_platform", "threaded", TCL_GLOBAL_ONLY) != NULL)) {
/* a non threaded version of nsf is loaded into a threaded environment */
fprintf(stderr, "\n A non threaded version of the Next Scripting Framework "
"is loaded into threaded environment.\n"
"Please reconfigure nsf with --enable-threads!\n\n\n");
}
#endif
Tcl_ResetResult(interp);
Tcl_SetIntObj(Tcl_GetObjResult(interp), 1);
return TCL_OK;
}
EXTERN int Nsf_SafeInit(Tcl_Interp *interp) nonnull(1);
EXTERN int
Nsf_SafeInit(Tcl_Interp *interp) {
assert(interp != NULL);
/*** dummy for now **/
return Nsf_Init(interp);
}
/*
* Local Variables:
* mode: c
* c-basic-offset: 2
* fill-column: 78
* indent-tabs-mode: nil
* End:
*/